ﻻ يوجد ملخص باللغة العربية
Distribution functions of relative velocities among particles in a vibrated bed of powder are studied both numerically and theoretically. In the solid phase where granular particles remain near their local stable states, the probability distribution is Gaussian. On the other hand, in the fluidized phase, where the particles can exchange their positions, the distribution clearly deviates from Gaussian. This is interpreted with two analogies; aggregation processes and soft-to-hard turbulence transition in thermal convection. The non-Gaussian distribution is well-approximated by the t-distribution which is derived theoretically by considering the effect of clustering by inelastic collisions in the former analogy.
LHC ALICE data are interpreted in terms of statistical power-law tailed pT spectra. As explanation we derive such statistical distributions for particular particle number fluctuation patterns in a finite heat bath exactly, and for general thermodynam
Surface level instability when tube is injected into vibrating bed of powder, which was originally found in experiments, is investigated numerically. We find that thicker (thiner) tube makes surface level inside tube higher (lower) than surface level
Certain fluctuations in particle number at fixed total energy lead exactly to a cut-power law distribution in the one-particle energy, via the induced fluctuations in the phase-space volume ratio. The temperature parameter is expressed automatically
The velocity fluctuations present in macroscopically homogeneous suspensions of neutrally buoyant, non-Brownian spheres undergoing simple shear flow, and their dependence on the microstructure developed by the suspensions, are investigated in the lim
Quality control in additive manufacturing can be achieved through variation control of the quantity of interest (QoI). We choose in this work the microstructural microsegregation to be our QoI. Microsegregation results from the spatial redistribution