ﻻ يوجد ملخص باللغة العربية
We compare data from the Diffuse InfraRed Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) satellite to the the Wainscoat et al. (1992) model of the infrared sky. The model is first compared with broadband K (2.2 microns) star counts. Its success at K gives credence to its physical approach which is extrapolated to the L band (3.5 microns). We have analyzed the histograms of the pixel by pixel intensities in the 2.2 and 3.5 micron maps from DIRBE after subtracting the zodiacal light. The shape of these histograms agrees quite well with the histogram shape predicted using the Wainscoat et al. model of the infrared sky, but the predicted histograms must be displaced by a constant intensity in order to match the data. This shift is the cosmic infrared background, which is 16.9+/-4.4 kJy/sr or 23.1+/-5.9 nW/m^2/sr at 2.2 microns, and 14.4+/-3.7 kJy/sr or 12.4+/-3.2 nW/m^2/sr at 3.5 microns.
The Cosmic InfraRed Background (CIRB) is the sum total of the redshifted and reprocessed short wavelength radiation from the era of galaxy formation, and hence contains vital information about the history of galactic evolution. One of the main proble
Determination of the cosmic infrared background (CIB) at far infrared wavelengths using COBE/DIRBE data is limited by the accuracy to which foreground interplanetary and Galactic dust emission can be modeled and subtracted. Previous determinations of
We use the SCUBA-2 submillimeter camera mounted on the JCMT to obtain extremely deep number counts at 450 and 850um. We combine data on two cluster lensing fields, A1689 and A370, and three blank fields, CDF-N, CDF-S, and COSMOS, to measure the count
Delensing is an increasingly important technique to reverse the gravitational lensing of the cosmic microwave background (CMB) and thus reveal primordial signals the lensing may obscure. We present a first demonstration of delensing on Planck tempera
The Cosmic Far-Infrared Background (CIB) at wavelengths around 160 {mu}m corresponds to the peak intensity of the whole Extragalactic Background Light, which is being measured with increasing accuracy. However, the build up of the CIB emission as a f