ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Antimatter Domains in the Early Universe with Big Bang Nucleosynthesis

64   0   0.0 ( 0 )
 نشر من قبل Hannu Kurki-Suonio
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit comes from underproduction of He-4. For larger domains, the limit comes from He-3 overproduction. Most of the He-3 from antiproton-helium annihilation is annihilated also. The main source of He-3 is photodisintegration of He-4 by the electromagnetic cascades initiated by the annihilation.



قيم البحث

اقرأ أيضاً

We perform calculations of dark photon production and decay in the early universe for ranges of dark photon masses and vacuum coupling with standard model photons. Simultaneously and self-consistently with dark photon production and decay, our calcul ations include a complete treatment of weak decoupling and big bang nucleosynthesis (BBN) physics. These calculations incorporate all relevant weak, electromagnetic, and strong nuclear reactions, including charge-changing (isospin-changing) lepton capture and decay processes. They reveal a rich interplay of dark photon production, decay, and associated out-of-equilibrium transport of entropy into the decoupling neutrino seas. Most importantly, the self-consistent nature of our simulations allows us to capture the magnitude and phasing of entropy injection and dilution. Entropy injection-induced alteration of the time-temperature-scale factor relation during weak decoupling and BBN leads to changes in the light element abundance yields and the total radiation content (as parametrized by $N_{rm eff}$). These changes suggest ways to extend previous dark photon BBN constraints. However, our calculations also identify ranges of dark photon mass and couplings not yet constrained, but perhaps accessible and probable, in future Stage-4 cosmic microwave background experiments and future high precision primordial deuterium abundance measurements.
157 - G. Mangano , G. Miele , S. Pastor 2010
The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N_eff. This quantity, in case of no extra degrees of freedom, depends upon th e chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N_eff from primordial neutrino--antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, eta_nu= eta_{nu_e}+eta_{nu_mu}+eta_{nu_tau} and the initial electron neutrino asymmetry eta_{nu_e}^in, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the nu_e -bar{nu}_e asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial 2H/H density ratio and 4He mass fraction. Note that taking the baryon fraction as measured by WMAP, the 2H/H abundance plays a relevant role in constraining the allowed regions in the eta_nu -eta_{nu_e}^in plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N_eff as a function of the mixing parameter theta_13, and point out the upper bound N_eff < 3.4. Comparing these results with the forthcoming measurement of N_eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.
We compute radiative corrections to nuclear reaction rates that determine the outcome of the Big-Bang Nucleosynthesis (BBN). Any nuclear reaction producing a photon with an energy above $2m_e$ must be supplemented by the corresponding reaction where the final state photon is replaced by an electron-positron pair. We find that pair production brings a typical $0.2 %$ enhancement to photon emission rates, resulting in a similar size corrections to elemental abundances. The exception is $^4{rm He}$ abundance, which is insensitive to the small changes in the nuclear reaction rates. We also investigate the effect of vacuum polarisation on the Coulomb barrier, which brings a small extra correction when reaction rates are extrapolated from the measured energies to the BBN Gamow peak energies.
Standard big bang nucleosynthesis (SBBN) has been remarkably successful, and it may well be the correct and sufficient account of what happened. However, interest in variations from the standard picture come from two sources: First, big bang nucleosy nthesis can be used to constrain physics of the early universe. Second, there may be some discrepancy between predictions of SBBN and observations of abundances. Various alternatives to SBBN include inhomogeneous nucleosynthesis, nucleosynthesis with antimatter, and nonstandard neutrino physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا