ﻻ يوجد ملخص باللغة العربية
We present quasi-simultaneous ASCA and RXTE observations of the most luminous known AGN in the local (z<0.3) Universe, the recently discovered quasar PDS 456. Multiwavelength observations have been conducted which show that PDS 456 has a bolometric luminosity of 10^47 erg/s peaking in the UV part of the spectrum. In the X-ray band the 2-10 keV (rest-frame) luminosity is 10^45 erg/s. The broad-band X-ray spectrum obtained with ASCA and RXTE contains considerable complexity. The most striking feature observed is a very deep, ionised iron K edge, observed at 8.7 keV in the quasar rest-frame. We find that these features are consistent with reprocessing from highly ionised matter, probably the inner accretion disk. PDS 456 appeared to show a strong (factor of 2.1) outburst in just 17ksec, although non-intrinsic sources cannot be completely ruled out. If confirmed, this would be an unusual event for such a high-luminosity source, with the light-crossing-time corresponding to 2 Schwarzschild radii. The implication would be that flaring occurs within the very central regions, or else that PDS 456 is a `super-Eddington or relativistically beamed system. Overall we conclude on the basis of the extreme blue/UV luminosity, the rapid X-ray variability and from the imprint of highly ionised material on the X-ray spectrum, that PDS 456 is a quasar with an unusually high accretion rate.
X-ray and multi-wavelength observations of the most luminous known local (z<0.3) AGN, the recently discovered radio-quiet quasar PDS 456, are presented. The spectral energy distribution shows that PDS 456 has a bolometric luminosity of 1e47 erg/s, pe
We present a detailed analysis of a recent $500$ ks net exposure textit{Suzaku} observation, carried out in 2013, of the nearby ($z=0.184$) luminous (L$_{rm bol}sim10^{47}$ erg s$^{-1}$) quasar PDS 456 in which the X-ray flux was unusually low. The s
The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy
When a black hole accretes close to the Eddington limit, the astrophysical jet is often accompanied by radiatively driven, wide-aperture and mildly relativistic winds. Powerful winds can produce significant non-thermal radio emission via shocks. Amon
New Swift monitoring observations of the variable, radio-quiet quasar, PDS 456, are presented. A bright X-ray flare was captured in September 2018, the flux increasing by a factor of 4 and with a doubling time-scale of 2 days. From the light crossing