ﻻ يوجد ملخص باللغة العربية
Using EFOSC2 at the 3.6m ESO telescope, we obtained redshifts for 68 galaxies in the field of six cluster candidates from the ESO Imaging Survey (EIS). The cluster candidates were selected in the EIS patches C and D and have estimated mean redshifts between z=0.5 and z=0.7. In the six candidate cluster fields, we identify possible systems of galaxies in the redshift space. The likelihoods of these systems are established by comparison with random resamplings of the Canada-France Redshift Surveys, and using the redshift distribution expected from Postman et al.s luminosity function, with Poggiantis K- and evolutionary-corrections. Four of the six candidate EIS clusters are found to correspond to a real system in the redshift space, with > 95 % probability. Two of them have a mean redshift in agreement with the estimate from the matched filter algorithm, while the other two have a significantly smaller redshift. The independent analysis of the V-I vs. I color-magnitude diagrams for five of our six cluster fields, supports our conclusions based on the spectroscopic data.
From the scientific objectives of the Next Generation Space Telescope, this paper tries to constrain the design of the NGST Multi-Object Spectrograph. Several technical alternatives are presented that could address the requirements of the Design Reference Mission.
With the aim of utilizing arrayed waveguide gratings for multi-object spectroscopy in the field of astronomy, we outline several ways in which standard telecommunications grade chips should be modified. In particular, by removing the parabolic-horn t
We introduce a framework for analyzing and designing EIS inversion algorithms. Our framework stems from the observation of four features common to well-defined EIS inversion algorithms, namely (1) the representation of unknown distributions, (2) the
Community access to deep (i ~ 25), highly-multiplexed optical and near-infrared multi-object spectroscopy (MOS) on 8-40m telescopes would greatly improve measurements of cosmological parameters from LSST. The largest gain would come from improvements
This White Paper presents the scientific motivations for a multi-object spectrograph (MOS) on the European Extremely Large Telescope (E-ELT). The MOS case draws on all fields of contemporary astronomy, from extra-solar planets, to the study of the ha