ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant and `double-double radio galaxies: Implications for the evolution of powerful radio sources and the IGM

279   0   0.0 ( 0 )
 نشر من قبل Arno Schoenmakers
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Giant radio sources form the linear size extreme of the extra-galactic radio source population. Using the WENSS survey, we have selected a complete sample of these sources. We have investigated the properties of their radio structures. We find, among other things, that these sources are old (50-100 Myr) and have higher advance velocities than smaller sources of similar radio power. We find pressure gradients in their radio lobes, suggesting that the lobes are still overpressured with respect to the environment. Further, we find no evidence for a cosmological evolution of the radio lobe pressures with increasing redshift, at least up to $zsim 0.4$, other than that caused by selection effects. We argue that a much fainter sample of giant sources than currently available is needed to constrain the pressure in their environments, the IGM. Another extremely important discovery is that of a population of radio sources with a so-called `double-double structure, i.e. that of a small two-sided radio source embedded inside a much larger two-sided structure. We argue that these sources result from an interrupted central jet-forming activity. As such, they are the most convincing examples of radio sources with a history of interrupted activity, yet. Since the inner lobes advance within the outer lobes, high resolution low frequency ($sim 200$ MHz) polarization studies may reveal the constituents of radio lobes and cocoons. We thus argue for a SKA design that can provide low-frequency images at arcsec resolution, but which is also sensitive to structures as large as a few tens of arcminute on the sky.



قيم البحث

اقرأ أيضاً

A Double-Double Radio Galaxy (DDRG) is defined as consisting of a pair of double radio sources with a common centre. In this paper we present an analytical model in which the peculiar radio structure of DDRGs is caused by an interruption of the jet f low in the central AGN. The new jets emerging from the restarted AGN give rise to an inner source structure within the region of the old, outer cocoon. Standard models of the evolution of FRII sources predict gas densities within the region of the old cocoon that are insufficient to explain the observed properties of the inner source structure. Therefore, additional material must have passed from the environment of the source through the bow shock surrounding the outer source structure into the cocoon. We propose that this material is warm clouds ($sim!10^4$ K) of gas embedded in the hot IGM which are eventually dispersed over the cocoon volume by surface instabilities induced by the passage of cocoon material. The derived lower limits for the volume filling factors of these clouds are in good agreement with results obtained from optical observations. The long time scales for the dispersion of the clouds ($sim!10^7$ yr) are consistent with the apparently exclusive occurrence of the DDRG phenomenon in large ($ga 700$ kpc) radio sources and with the observed correlation of the strength of the optical/UV alignment effect in $z!sim!1$ FRII sources with their linear size.
The properties of a sample of 31 very powerful classical double radio galaxies with redshifts between zero and 1.8 are studied. The source velocities, beam powers, ambient gas densities, total lifetimes, and total outflow energies are presented and d iscussed. The rate of growth of each side of each source were obtained using a spectral aging analysis. The beam power and ambient gas density were obtained by applying the strong shock jump conditions to the ends of each side of the source. The total outflow lifetime was obtained by applying the power-law relationship between the beam power and the total source lifetime derived elsewhere for sources of this type, and the total outflow energy was obtained by combining the beam power and the total source lifetime. Composite profiles were constructed by combining results obtained from each side of each source. The composite profiles indicate that the ambient gas density falls with distance from the central engine. The source velocities, beam powers, total lifetimes, and total energies seem to be independent of radio source size. This is consistent with the standard model in which each source grows at a roughly constant rate during which time the central engine puts out a roughly constant beam power. The fact that the total source lifetimes and energies are independent of radio source size indicates that the sources are being sampled at random times during their lifetimes.
We use three samples (3CRR, 6CE and 6C*) to investigate the radio luminosity function (RLF) for the `most powerful low-frequency selected radio sources. We find that the data are well fitted by a model with a constant co-moving space density at high redshift as well as by one with a declining co-moving space density above some particular redshift. This behaviour is very similar to that inferred for steep-spectrum radio quasars by Willott et al (1998) in line with the expectations of Unified Schemes. We conclude that there is as yet no evidence for a `redshift cut-off in the co-moving space densities of powerful classical double radio sources, and rule out a cut-off at z < 2.5.
153 - M. Jamrozy 2009
One of the striking examples of episodic activity in active galactic nuclei are the double-double radio galaxies (DDRGs) with two pairs of oppositely-directed radio lobes from two different cycles of activity. We illustrate, using the DDRG J1453+3308 as an example, that observations over a wide range of frequencies using both the GMRT and the VLA can be used to determine the spectra of the inner and outer lobes, estimate their spectral ages, estimate the time scales of episodic activity, and examine any difference in the injection spectra in the two cycles of activity. Low-frequency GMRT observations also suggest that DDRGs and triple-double radio galaxies are rather rare.
Double-double radio galaxies (DDRGs) represent a short but unique phase in the life-cycle of some of the most powerful radio-loud active galactic nuclei (RLAGN). These galaxies display large-scale remnant radio plasma in the intergalactic medium left behind by a past episode of active galactic nuclei (AGN) activity, and meanwhile, the radio jets have restarted in a new episode. The knowledge of what causes the jets to switch off and restart is crucial to our understanding of galaxy evolution, while it is important to know if DDRGs form a host galaxy dichotomy relative to RLAGN. We utilised the LOFAR Two-Metre Sky Survey DR1, using a visual identification method to compile a sample of morphologically selected candidate DDRGs, showing two pairs of radio lobes. To confirm the restarted nature in each of the candidate sources, we obtained follow-up observations with the VLA at higher resolution to observe the inner lobes or restarted jets, the confirmation of which created a robust sample of 33 DDRGs. We created a comparison sample of 777 RLAGN from the DR1 catalogue, and compared the optical and infrared magnitudes and colours of their host galaxies. We find that there is no statistically significant difference in the brightness of the host galaxies between double-doubles and single-cycle RLAGN. The DDRG and RLAGN samples also have similar distributions in WISE mid-infrared colours, indicating similar ages of stellar populations and dust levels in the hosts of DDRGs. We conclude that DDRGs and normal RLAGN are hosted by galaxies of the same type, and that DDRG activity is simply a normal part of the life cycle of RLAGN. Restarted jets, particularly for the class of low-excitation radio galaxies, rather than being a product of a particular event in the life of a host galaxy, must instead be caused by smaller scale changes, such as in the accretion system surrounding the black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا