ﻻ يوجد ملخص باللغة العربية
We analyze the velocity residuals of 551 carbon stars relative to a rotating-disk model of the inner $sim 70 rm deg^2$ of the Large Magellanic Cloud (LMC). We find that the great majority of the stars in this sample are best fit as being due to two different populations, a young disk population containing 20% of the stars with a velocity dispersion of $8 kms$, and an old disk containing the remaining stars with a velocity dispersion of $22 kms$. The young disk population has a metallicity $sim 0.25$ dex higher than the old disk. With less certainty, the data also suggest at the $2sigma$ level that there may be a third kinematically distinct population that is moving towards us at 30 km/sec relative to the LMC, consistent with measurements of 21 cm velocities. If real, this population contains about 7% of the carbon stars in the sample. It could be a feature in the disk of the LMC or it could be tidal debris in the foreground or background. If it is tidal debris, this population could account for some or all of the microlensing events observed towards the LMC.
We report on the discovery of a rapidly co-rotating stellar and gas component in the nucleus of the shell elliptical NGC2865. The stellar component extends ~ 0.51/h100 kpc along the major axis, and shows depressed velocity dispersion and absorption l
In the last three decades several hundred nearby members of young stellar moving groups (MGs) have been identified, but there has been less systematic effort to quantify or characterise young stars that do not belong to previously identified MGs. Usi
We present an analysis of the stellar kinematics of the Large Magellanic Cloud based on ~5900 new and existing velocities of massive red supergiants, oxygen-rich and carbon-rich AGB stars, and other giants. After correcting the line-of-sight velociti
Aims. Interacting galaxies show unique irregularities in their kinematic structure. By investigating the spatially resolved kinematics and stellar population properties of galaxies that show irregularities, we can paint a detailed picture of the form
The study of the chemical abundances of metal-poor stars in dwarf galaxies provides a venue to constrain paradigms of chemical enrichment and galaxy formation. Here we present metallicity and carbon abundance measurements of 100 stars in Sculptor fro