ﻻ يوجد ملخص باللغة العربية
We investigate the gravonuclear instabilities reported by Bono et al. (1997a,b) during the onset of helium-shell burning at the end of the horizontal-branch (HB) phase. These instabilities are characterized by relaxation oscillations within the helium shell which lead to loops in the evolutionary tracks. We find the occurrence of these instabilities depends critically on how the breathing pulses are suppressed near the end of the HB phase. If they are suppressed by omitting the gravitational energy term in the stellar structure equations, then the helium profile within the core at the end of the HB phase will contain a broad region of varying helium abundance. The helium-burning shell which forms in this region is too thick to be unstable, and gravonuclear instabilities do not occur. If, on the other hand, the breathing pulses are suppressed by prohibiting any increase in the central helium abundance, then the final helium profile can exhibit a large discontinuity at the edge of the helium-exhausted core. The helium shell which forms just exterior to this discontinuity is then much thinner and can be thermally unstable. Even in this case, however, the gravonuclear instabilities disappear as soon as the nuclear burning broadens the helium shell into its characteristic S-shape. We conclude that the gravonuclear instabilities found by Bono et al. are a consequence of the ad hoc procedure used to suppress the breathing pulses.
Recent observations and models for horizontal branch stars are briefly described and compared to models for AmFm stars. The limitations of those models are emphasized by a comparison to observations and models for HgMn stars.
UV observations of some massive globular clusters have revealed a significant population of stars hotter and fainter than the hot end of the horizontal branch (HB), the so-called blue hook stars. This feature might be explained either by the late hot
We investigate the performance of some common machine learning techniques in identifying BHB stars from photometric data. To train the machine learning algorithms, we use previously published spectroscopic identifications of BHB stars from SDSS data.
Context. Abundance anomalies have been observed in field sdB stars and in nearly all Horizontal Branch (HB) stars of globular clusters with Teff > 11 000K whatever be the cluster metallicity. Aims. The aim is to determine the abundance variations to
Horizontal branch (HB) stars play a particularly important role in the age debate, since they are at the very center of the long-standing second parameter problem. In this review, I discuss some recent progress in our understanding of the nature and origin of HB stars.