We present high angular and velocity resolution two-dimensional kinematic observations in the spectral lines of H alpha and CO J=1-0 of the circumnuclear starburst region in the barred spiral galaxy M100, and compare them with kinematics derived from our previously published numerical modeling. The H alpha data, fully sampled and at sub-arcsecond resolution, show a rotation curve that is rapidly rising in the central ~140 pc, and stays roughly constant, at the main disk value, further out. Non-circular motions are studied from the H alpha and CO data by detailed consideration of the velocity fields, residual velocity fields after subtraction of the rotation curve, and sets of position-velocity diagrams. These motions are interpreted as the kinematic signatures of gas streaming along the inner part of the bar, and of density wave streaming motions across a two-armed mini-spiral. Comparison with a two-dimensional velocity field and rotation curve derived from our 1995 dynamical model shows good qualitative and quantitative agreement for the circular and non-circular kinematic components. Both morphology and kinematics of this region require the presence of a double inner Lindblad Resonance in order to explain the observed twisting of the near-infrared isophotes and the gas velocity field. These are compatible with the presence of a global density wave driven by the moderately strong stellar bar in this galaxy. We review recent observational and modeling results on the circumnuclear region in M100, and discuss the implications for bar structure and gas dynamics in the core of M100 and other disk galaxies.