ﻻ يوجد ملخص باللغة العربية
We calculated a grid of evolutionary models for white dwarfs with helium cores (He-WDs) and investigated the occurrence of hydrogen-shell flashes due to unstable hydrogen burning via CNO cycling. Our calculations show that such thermal instabilities are restricted to a certain mass range (M=0.21...0.30Msun), consistent with earlier studies. Models within this mass range undergo the more hydrogen shell flashes the less massive they are. This is caused by the strong dependence of the envelope mass on the white dwarf core mass. The maximum luminosities from hydrogen burning during the flashes are of the order of 10^5 Lsun. Because of the development of a pulse-driven convection zone whose upper boundary temporarily reaches the surface layers, the envelopes hydrogen content decreases by Delta(X)=0.06 per flash. Our study further shows that an additional high mass-loss episode during a flash-driven Roche lobe overflow to the white dwarfs companion does not affect the final cooling behaviour of the models. Independent of hydrogen shell flashes the evolution along the final white dwarf cooling branch is determined by hydrogen burning via pp-reactions down to effective temperatures as low as 8000 K.
We present a grid of evolutionary tracks for low-mass white dwarfs with helium cores in the mass range from 0.179 to 0.414 M_sun. The lower mass limit is well suited for comparison with white dwarf companions of millisecond pulsars (MSP). The derived
Previous investigations on hydrogen-rich white dwarfs generally yield only very small rotational velocities (v_rot sin i). We have analyzed line profiles in high-resolution optical spectra of eight hydrogen-deficient (pre-) white dwarfs and find devi
We present a grid of evolutionary tracks for low-mass white dwarfs with helium cores in the mass range from 0.179 to 0.414 Msol. The lower mass limit is well-suited for comparison with white dwarf companions of millisecond pulsars. The tracks are bas
In this paper, we present corrections to the spectroscopic parameters of DB and DBA white dwarfs with -10.0 < log(H/He) < -2.0, 7.5 < log(g) < 9.0 and 12000 K < T_eff < 34000 K, based on 282 3D atmospheric models calculated with the CO5BOLD radiation
We present the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-beta parameter, the thermal to magnetic pre