ﻻ يوجد ملخص باللغة العربية
We present results of a statistical analysis of the SFI catalog of peculiar velocities, a recently completed survey of spiral field galaxies with I-band Tully-Fisher distances (Haynes et al. 1999). The velocity field statistic utilized is the velocity correlation function, $psi_1(r)$ (Gorski et al. 1989). The analysis is performed in redshift space, so as to circumvent potential ambiguities connected with inhomogeneous Malmquist bias corrections. The results from the SFI sample are compared with linear-theory predictions. We generate a large set of mock samples, extracted from N-body simulations, which are used to assess the reliability of our analysis and to estimate the associated uncertainties. Defining $eta_8=sigma_8Omega_0^{0.6}$, we find that the measured $psi_1(r)$ implies a degenerate constraint in the $eta_8-Gamma$ plane, with $eta_8=(0.3 +/- 0.1) (Gamma/0.2)^{0.5}$, at the $2sigma$ level, for the inverse Tully-Fisher (ITF) calibration presented in this paper. Model constraints are quite sensitive to the ITF calibration. The other ITF calibrations by Giovanelli et al. (1997) and da Costa et al. (1998) both give, for $Gamma=0.2$, $eta_8simeq 0.6$ as the best-fitting value.
We present the SFI++ dataset, a homogeneously derived catalog of photometric and rotational properties and the Tully-Fisher distances and peculiar velocities derived from them. We make use of digital optical images, optical long-slit spectra, and glo
Recently, peculiar velocity measurements became available for a new sample of galaxy clusters. From an accurately calibrated Tully-Fisher relation for spiral galaxies, we compute the rms cluster peculiar velocity and compare it to the linear theory p
The line-of-sight peculiar velocities of galaxies contribute to their observed redshifts, breaking the translational invariance of galaxy clustering down to a rotational invariance around the observer. This becomes important when the line-of-sight di
We present a detailed analysis of the two-point correlation function, from the 2dF Galaxy Redshift Survey (2dFGRS). We estimate the redshift-space correlation function, xi(s), from which we measure the redshift-space clustering length, s_0=6.82+/-0.2
We present an analysis of peculiar velocities and their effect on supernova cosmology. In particular, we study (a) the corrections due to our own motion, (b) the effects of correlations in peculiar velocities induced by large-scale structure, and (c)