ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation Analysis of SFI Peculiar Velocities

54   0   0.0 ( 0 )
 نشر من قبل Borgani Stefano
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Borgani




اسأل ChatGPT حول البحث

We present results of a statistical analysis of the SFI catalog of peculiar velocities, a recently completed survey of spiral field galaxies with I-band Tully-Fisher distances (Haynes et al. 1999). The velocity field statistic utilized is the velocity correlation function, $psi_1(r)$ (Gorski et al. 1989). The analysis is performed in redshift space, so as to circumvent potential ambiguities connected with inhomogeneous Malmquist bias corrections. The results from the SFI sample are compared with linear-theory predictions. We generate a large set of mock samples, extracted from N-body simulations, which are used to assess the reliability of our analysis and to estimate the associated uncertainties. Defining $eta_8=sigma_8Omega_0^{0.6}$, we find that the measured $psi_1(r)$ implies a degenerate constraint in the $eta_8-Gamma$ plane, with $eta_8=(0.3 +/- 0.1) (Gamma/0.2)^{0.5}$, at the $2sigma$ level, for the inverse Tully-Fisher (ITF) calibration presented in this paper. Model constraints are quite sensitive to the ITF calibration. The other ITF calibrations by Giovanelli et al. (1997) and da Costa et al. (1998) both give, for $Gamma=0.2$, $eta_8simeq 0.6$ as the best-fitting value.



قيم البحث

اقرأ أيضاً

We present the SFI++ dataset, a homogeneously derived catalog of photometric and rotational properties and the Tully-Fisher distances and peculiar velocities derived from them. We make use of digital optical images, optical long-slit spectra, and glo bal HI line profiles to extract parameters of relevance to disk scaling relations, incorporating several previously published datasets as well as a new photometric sample of some 2000 objects. According to the completeness of available redshift samples over the sky area, we exploit both a modified percolation algorithm and the Voronoi-Delaunay method to assign individual galaxies to groups as well as clusters, thereby reducing scatter introduced by local orbital motions. We also provide corrections to the peculiar velocities for both homogeneous and inhomogeneous Malmquist bias, making use of the 2MASS Redshift Survey density field to approximate large scale structure. We summarize the sample selection criteria, corrections made to raw observational parameters, the grouping techniques, and our procedure for deriving peculiar velocities. The final SFI++ peculiar velocity catalog of 4861 field and cluster galaxies is large enough to permit the study not just of the global statistics of large scale flows but also of the {it details} of the local velocity field.
97 - S. Borgani 1997
Recently, peculiar velocity measurements became available for a new sample of galaxy clusters. From an accurately calibrated Tully-Fisher relation for spiral galaxies, we compute the rms cluster peculiar velocity and compare it to the linear theory p redictions of COBE-normalized low-density and open CDM models (LambdaCDM and OCDM, respectively). Confidence levels for model rejection are estimated using a Monte Carlo procedure to generate for each model a large ensemble of artificial data sets. Following Zaroubi et al. (1997), we express our results in terms of constraints on the (Omega_0,n_pr,h) parameter space. Such constraints turn into sigma_8 Omega_0^{0.6}=0.50^{+0.25}_{-0.14} at the 90% c.l., thus in agreement with results from cluster abundance. We show that our constraints are also consistent with those implied by the shape of the galaxy power spectrum within a rather wide range for the values of the model parameters. Finally, we point out that our findings disagree at about the 3sigma level with respect to those by Zaroubi et al. (1997), based on the Mark III catalogue, which tend to prefer larger Omega_0 values within the CDM class of models.
The line-of-sight peculiar velocities of galaxies contribute to their observed redshifts, breaking the translational invariance of galaxy clustering down to a rotational invariance around the observer. This becomes important when the line-of-sight di rection varies significantly across a survey, leading to what are known as `wide angle effects in redshift space distortions. Wide-angle effects will also be present in measurements of the momentum field, i.e. the galaxy density-weighted velocity field, in upcoming peculiar velocity surveys. In this work we study how wide-angle effects modify the predicted correlation function and power spectrum for momentum statistics, both in auto-correlation and in cross-correlation with the density field. Using both linear theory and the Zeldovich approximation, we find that deviations from the plane-parallel limit are large and could become important in data analysis for low redshift surveys. We point out that even multipoles in the cross-correlation between density and momentum are non-zero regardless of the choice of line of sight, and therefore contain new cosmological information that could be exploited. We discuss configuration-space, Fourier-space and spherical analyses, providing exact expressions in each case rather than relying on an expansion in small angles. We hope these expressions will be of use in the analysis of upcoming surveys for redshift-space distortions and peculiar velocities.
We present a detailed analysis of the two-point correlation function, from the 2dF Galaxy Redshift Survey (2dFGRS). We estimate the redshift-space correlation function, xi(s), from which we measure the redshift-space clustering length, s_0=6.82+/-0.2 8 Mpc/h. We also estimate the projected correlation function, Xi(sigma), and the real-space correlation function, xi(r), which can be fit by a power-law, with r_0=5.05+/-0.26Mpc/h, gamma_r=1.67+/-0.03. For r>20Mpc/h, xi drops below a power-law as is expected in the popular LCDM model. The ratio of amplitudes of the real and redshift-space correlation functions on scales of 8-30Mpc/h gives an estimate of the redshift-space distortion parameter beta. The quadrupole moment of xi on scales 30-40Mpc/h provides another estimate of beta. We also estimate the distribution function of pairwise peculiar velocities, f(v), including rigorously the effect of infall velocities, and find that it is well fit by an exponential. The accuracy of our xi measurement is sufficient to constrain a model, which simultaneously fits the shape and amplitude of xi(r) and the two redshift-space distortion effects parameterized by beta and velocity dispersion, a. We find beta=0.49+/-0.09 and a=506+/-52km/s, though the best fit values are strongly correlated. We measure the variation of the peculiar velocity dispersion with projected separation, a(sigma), and find that the shape is consistent with models and simulations. Using the constraints on bias from recent estimates, and taking account of redshift evolution, we conclude that beta(L=L*,z=0)=0.47+/-0.08, and that the present day matter density of the Universe is 0.3, consistent with other 2dFGRS estimates and independent analyses.
We present an analysis of peculiar velocities and their effect on supernova cosmology. In particular, we study (a) the corrections due to our own motion, (b) the effects of correlations in peculiar velocities induced by large-scale structure, and (c) uncertainties arising from a possible local under- or over-density. For all of these effects we present a case study of their impact on the cosmology derived by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). Correcting supernova redshifts for the CMB dipole slightly over-corrects nearby supernovae that share some of our local motion. We show that while neglecting the CMB dipole would cause a shift in the derived equation of state of Delta w ~ 0.04 (at fixed matter density) the additional local-motion correction is currently negligible (Delta w<0.01). We use a covariance-matrix approach to statistically account for correlated peculiar velocities. This down-weights nearby supernovae and effectively acts as a graduated version of the usual sharp low-redshift cut. Neglecting coherent velocities in the current sample causes a systematic shift of ~2% in the preferred value of w and will therefore have to be considered carefully when future surveys aim for percent-level accuracy. Finally, we perform n-body simulations to estimate the likely magnitude of any local density fluctuation (monopole) and estimate the impact as a function of the low-redshift cutoff. We see that for this aspect the low-z cutoff of z=0.02 is well-justified theoretically, but that living in a putative local density fluctuation leaves an indelible imprint on the magnitude-redshift relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا