ﻻ يوجد ملخص باللغة العربية
Radiative transfer equations are derived and solved for the stimulated Raman scattering of water maser lines in the astrophysical plasmas with electron density of about 10^6 - 10^7 cm-3. In stimulated Raman scattering, the energy of water maser line is transferred to the side band modes: Stokes mode and anti-Stokes mode. The Stokes mode is easily produced by backward Raman scattering while the anti-Stokes mode is created by the interacting intersecting masers in the plasma. The intensity of the Stokes mode is higher than that of the anti-Stokes mode. These side band modes are proposed as explanation for the extreme velocity features observed in the galaxy NGC 4258. The threshold value of the brightness temperature for the Raman scattering is about 10^16 - 10^19 K, and it is satisfied in the case of NGC 4258.
The influence of sinusoidal density modulation on the stimulated Raman scattering (SRS) reflectivity in inhomogeneous plasmas is studied by three-wave coupling equations, fully kinetic Vlasov simulations and particle in cell (PIC) simulations. Throug
Stimulated low-frequency Raman scattering can give essential information about the elastic properties of different nanoparticles systems, in particular, biological nanostructures. In the present study, low-frequency vibrational modes in human and bov
Stimulated Raman scattering (SRS) in plasma in a non-eigenmode regime is studied theoretically and numerically. Different from normal SRS with the eigen electrostatic mode excited, the non-eigenmode SRS is developed at plasma density $n_e>0.25n_c$ wh
The interaction between ultrashort light pulses and non-absorbing materials is dominated by Impulsive Stimulated Raman Scattering (ISRS). The description of ISRS in the context of pump&probe experiments is based on effective classical models describi
By using the inverse spectral transform, the SRS equations are solved and the explicit output data is given for arbitrary laser pump and Stokes seed profiles injected on a vacuum of optical phonons. For long duration laser pulses, this solution is mo