ترغب بنشر مسار تعليمي؟ اضغط هنا

NICMOS Imaging of Molecular Hydrogen Emission in Seyfert Galaxies

57   0   0.0 ( 0 )
 نشر من قبل Alice C. Quillen
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present NICMOS imaging of broad band and molecular hydrogen emission in Seyfert galaxies. In 6 of 10 Seyferts we detect resolved or extended emission in the 1-0 S(1) 2.121 or 1-0 S(3) 1.9570 micron molecular hydrogen lines. We did not detect emission in the most distant galaxy or in the 2 Seyfert 1 galaxies in our sample because of the luminosity of the nuclear point sources. In NGC 5643, NGC 2110 and MKN 1066, molecular hydrogen emission is detected in the extended narrow line region on scales of a few hundred pc from the nucleus. Emission is coincident with [OIII] and H alpha+[NII] line emission. This emission is also near dust lanes observed in the visible to near-infrared color maps suggesting that a multiphase medium exists near the ionization cones and that the morphology of the line emission is dependent on the density of the ambient media. The high 1-0 S(1) or S(3) H2 to H alpha flux ratio suggests that shock excitation of molecular hydrogen (rather than UV fluorescence) is the dominant excitation process in these extended features. In NGC 2992 and NGC 3227 the molecular hydrogen emission is from 800 and 100 pc diameter `disks (respectively) which are not directly associated with [OIII] emission and are near high levels of extinction (AV > 10). In NGC 4945 the molecular hydrogen emission appears to be from the edge of a 100 pc superbubble. In these 3 galaxies the molecular gas could be excited by processes associated with local star formation. We confirm previous spectroscopic studies finding that no single mechanism is likely to be responsible for the molecular hydrogen excitation in Seyfert galaxies.



قيم البحث

اقرأ أيضاً

The nuclei of Seyfert 1 galaxies exhibit a range of optical polarization characteristics that can be understood in terms of two scattering regions producing orthogonal polarizations: an extended polar scattering region (PSR) and a compact equatorial scattering region (ESR), located within the circum-nuclear torus. Here we present NICMOS 2.0 micron imaging polarimetry of 6 polar scattered Seyfert 1 (S1) galaxies, in which the PSR dominates the optical polarization. The unresolved nucleus (<0.58 arcsec) is significantly polarized in only three objects, but 5 of the 6 exhibit polarization in a 0.58 to 1.5 arcsec circum-nuclear annulus. In Fairall 51 and ESO 323-G077, the polarization position angle at 2 microns (theta2m) is consistent with the average for the optical spectrum (thetav), implying that the nuclear polarization is dominated by polar scattering at both wavelengths. The same is probably true for NGC 3227. In both NGC 4593 and Mrk 766, there is a large difference between theta2m and thetav off nucleus, where polar scattering is expected to dominate. This may be due to contamination by interstellar polarization in NGC 4593, but there is no clear explanation in the case of the strongly polarized Mrk 766. Lastly, in Mrk 1239, a large change (~ 60deg) in theta2m between the nucleus and the annulus indicates that the unresolved nucleus and its immediate surroundings have different polarization states at 2 microns, which we attribute to the ESR and PSR, respectively. A further implication is that the source of the scattered 2 micron emission in the unresolved nucleus is the accretion disk, rather than torus hot dust emission.
We investigate the relation between the detection of the $11.3,mu$m PAH feature in the nuclear ($sim 24-230,$pc) regions of 22 nearby Seyfert galaxies and the properties of the cold molecular gas. For the former we use ground-based (0.3-0.6 resolutio n) mid-infrared (mid-IR) spectroscopy. The cold molecular gas is traced by ALMA and NOEMA high (0.2-1.1) angular resolution observations of the CO(2-1) transition. Galaxies with a nuclear detection of the $11.3,mu$m PAH feature contain more cold molecular gas (median $1.6times 10^7,M_odot$) and have higher column densities ($N({rm H}_2) = 2 times 10^{23},{rm cm}^{-2}$) over the regions sampled by the mid-IR slits than those without a detection. This suggests that molecular gas plays a role in shielding the PAH molecules in the harsh environments of Seyfert nuclei. Choosing the PAH molecule naphthalene as an illustration, we compute its half-life in the nuclear regions of our sample when exposed to 2.5keV hard X-ray photons. We estimate shorter half-lives for naphthalene in nuclei without a $11.3,mu$m PAH detection than in those with a detection. The Spitzer/IRS PAH ratios on circumnuclear scales ($sim$ 4 $sim$ 0.25-1.3kpc) are in between model predictions for neutral and partly ionized PAHs. However, Seyfert galaxies in our sample with the highest nuclear H$_2$ column densities are not generally closer to the neutral PAH tracks. This is because in the majority of our sample galaxies, the CO(2-1) emission in the inner $sim$ 4 is not centrally peaked and in some galaxies traces circumnuclear sites of strong star formation activity. Spatially resolved observations with the MIRI medium-resolution spectrograph (MRS) on the James Webb Space Telescope will be able to distinguish the effects of an active galactic nucleus (AGN) and star formation on the PAH emission in nearby AGN.
59 - A. Zirm 1999
We have obtained near-infrared (1.6 micron) images of 11 powerful 3CR radio galaxies at redshifts 0.8 < z < 1.8 using NICMOS on board HST. The high angular resolution permits a detailed study of galaxy morphology in these systems at rest-frame optica l wavelengths, where starlight dominates over the extended, aligned UV continuum. The NICMOS morphologies are mostly symmetric and are consistent with dynamically relaxed, elliptical host galaxies dominated by a red, mature stellar population. The aligned structures are sometimes faintly visible, and nuclear point sources may be present in a few cases which manifest the ``unveiled AGN that is obscured from view at optical wavelengths. Our observations are consistent with the hypothesis that the host galaxies of z ~ 1-2 radio galaxies are similar to modern-day gE galaxies. Their sizes are typical of gE galaxies but smaller than present-day cD and brightest cluster galaxies, and their surface brightnesses are higher, as expected given simple luminosity evolution.
92 - K. D. Borne 1998
HST is used to study the power sources and the interaction-induced tidal disturbances within the most luminous galaxies in the local universe -- the Ultra-Luminous IR Galaxies (ULIRGs) -- through the use of I-band images with WFPC2 and H-band images with NICMOS. Such images are probing for the first time the fine-scale structures in the strong collision-disturbed morphologies of these rare and exotic galaxies.
We are engaged in a programme of imaging with the STIS and NICMOS (NIC2) instruments aboard the Hubble Space Telescope (HST), to search for the galaxy counterparts of 18 high-redshift z>1.75 damped Lya absorption lines and 5 Lyman-limit systems seen in the spectra of 16 target quasars. This paper presents the results of the imaging campaign with the NIC2 camera. We describe the steps followed in reducing the data and combining in mosaics, and the methods used for subtracting the image of the quasar in each field, and for constructing error frames that include the systematic errors associated with the psf subtraction. To identify candidate counterparts, that are either compact or diffuse, we convolved the image and variance frames with circular top-hat filters of diameter 0.45 and 0.90 arcsec respectively, to create frames of summed S/N within the aperture. For each target quasar we provide catalogues listing positions and aperture magnitudes of all sources within a square of side 7.5 arcsec centred on the quasar, detected at S/N>6. We find a total of 41 candidates of which three have already been confirmed spectroscopically as the counterparts. We provide the aperture magnitude detection limits as a function of impact parameter, for both detection filters, for each field. The average detection limit for compact (diffuse) sources is H(AB)=25.0 (24.4) at an angular separation of 0.56 arcsec (0.79 arcsec) from the quasar, improving to H(AB)=25.5 (24.8) at large angular separations. For the brighter sources we have measured the half-light radius and the n parameter of the best-fit deconvolved Sersic-law surface-brightness profile, and the ellipticity and orientation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا