ﻻ يوجد ملخص باللغة العربية
Models for gamma-ray burst afterglows envisage an hyper-relativistic fireball that is decelerated in the ambient medium around the explosion site. This interaction produces a shock wave which amplifies the magnetic field and accelerates electrons to relativistic energies, setting the conditions for an efficient production of synchrotron photons. If produced in a region of large-scale ordered magnetic field, synchrotron radiation can be highly polarized. The optical transient associated with GRB 990510 was observed ~18.5 hr after the event and linear polarization in the R band was measured at a level of 1.7 +/- 0.2 %. This is the first detection of linear polarization in the optical afterglow of a gamma-ray burst. We exclude that this polarization is due to dust in the interstellar material, either in our Galaxy or in the host galaxy of the gamma-ray burst. These results provide important new evidence in favor of the synchrotron origin of the afterglow emission, and constrains the geometry of the fireball and/or magnetic field lines.
We present ALMA 97.5 GHz total intensity and linear polarization observations of the mm-band afterglow of GRB 190114C spanning 2.2 to 5.2 hours after the burst. We detect linear polarization at the $approx 5,sigma$ level, decreasing from $Pi=(0.87pm0
We have collected all of the published photometry for GRB 990123 and GRB 990510, the first two gamma-ray bursts where breaks were seen in the light curves of their optical afterglows, and determined the shapes of their light curves and the break time
Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5x1019 W/cm2 to 3.3x1020 W/cm2 by irradiating li
The location accuracy of the BeppoSAX Wide Field Cameras and acute ground-based followup have led to the detection of a decaying afterglow in X rays and optical light following the classical gamma-ray burst GRB 970228. The afterglow in X rays and opt
We propose a model based on Regge theory to describe photoproduction of light vector mesons. We fit the SLAC data and make predictions for the energy and momentum transfer dependence of the spin-density matrix elements in photoproduction of $omega$,