ترغب بنشر مسار تعليمي؟ اضغط هنا

PKS 1004+13: A High-Inclination, Highly-Absorbed Radio-Loud QSO -- The First Radio-Loud BAL QSO at Low Redshift?

110   0   0.0 ( 0 )
 نشر من قبل Beverley J. Wills
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The existence of BAL outflows in only radio-quiet QSOs was thought to be an important clue to mass ejection and the radio-loud - radio-quiet dichotomy. Recently a few radio-loud BAL QSOs have been discovered at high redshift. We present evidence that PKS 1004+13 is a radio-loud BAL QSO. It would be the first known at low-redshift (z = 0.24), and one of the most radio luminous. For PKS 1004+13, there appear to be broad absorption troughs of O VI, N V, Si IV, and C IV, indicating high-ionization outflows up to about 10,000 km/s. There are also two strong, broad (~500 km/s), high-ionization, associated absorption systems that show partial covering of the continuum source. The strong UV absorption we have detected suggests that the extreme soft-X-ray weakness of PKS 1004+13 is primarily the result of absorption. The large radio-lobe dominance indicates BAL and associated gas at high inclinations to the central engine axis, perhaps in a line-of-sight that passes through an accretion disk wind.



قيم البحث

اقرأ أيضاً

We present 8.4 GHz VLA A-array and 1.4 GHz VLBA results on the radio continuum emission from the highest redshift radio-loud quasar known to date, the $z=6.12$ QSO J1427+3312. The VLA observations show an unresolved steep spectrum source with a flux density of $250 pm 20$ uJy at 8.4GHz and a spectral index value of $alpha^{8.4}_{1.4}=-1.1$. The 1.4 GHz VLBA images reveal several continuum components with a total flux density of $1.778 pm 0.109$ mJy, which is consistent with the flux density measured with the VLA at 1.4 GHz. Each of these components is resolved with sizes of a few milliarcseconds, and intrinsic brightness temperatures on the order of $10^7$ to $10^8$ K. The physical characteristics as revealed in these observations suggest that this QSO may be a Compact Symmetric Object, with the two dominant components seen with the VLBA, which are separated by 31 mas (174 pc) and have intrinsic sizes of ~22-34 pc, being the two radio lobes that are confined by the dense ISM. If indeed a CSO, then the estimated kinematic age of this radio AGN is only $10^3$ yr.
Studies of radio-loud (RL) broad absorption line (BAL) quasars indicate that popular orientation-based BAL models fail to account for all observations. Are these results extendable to radio-quiet (RQ) BAL quasars? Comparisons of RL and RQ BAL quasars show that many of their properties are quite similar. Here we extend these analyses to the rest-frame ultraviolet (UV) spectral properties, using a sample of 73 RL and 473 RQ BAL quasars selected from the Sloan Digital Sky Survey (SDSS). Each RQ quasar is individually matched to a RL quasar in both redshift (over the range $1.5 < z < 3.5$) and continuum luminosity. We compare several continuum, emission line, and absorption line properties, as well as physical properties derived from these measurements. Most properties in the samples are statistically identical, though we find slight differences in the velocity structure of the BALs that cause apparent differences in CIV emission line properties. Differences in the velocities may indicate an interaction between the radio jets and the absorbing material. We also find that UV FeII emission is marginally stronger in RL BAL quasars. All of these differences are subtle, so in general we conclude that RL and RQ BAL QSOs are not fundamentally different objects, except in their radio properties. They are therefore likely to be driven by similar physical phenomena, suggesting that results from samples of RL BAL quasars can be extended to their RQ counterparts.
97 - Steve Croft (1 , 2 , 3 2008
We used the Near Infrared Camera on Keck I to obtain Ks-band images of four candidate high-redshift radio galaxies selected using optical and radio data in the NOAO Deep Wide-Field Survey in Bootes. Our targets have 1.4 GHz radio flux densities great er than 1 mJy, but are undetected in the optical to fainter than 24 Vega mag. Spectral energy distribution fitting suggests that three of these objects are at z > 3, with radio luminosities near the FR-I / FR-II break. The other has photometric redshift 1.2, but may in fact be at higher redshift. Two of the four objects exhibit diffuse morphologies in Ks -band, suggesting that they are still in the process of forming.
164 - R.M. Sambruna 2007
We report on Swift observations of four z>2 radio-loud quasars (0212+735, 0537-286, 0836+710, and 2149-307), classified as blazars. The sources, well-known emitters at soft-medium X-rays, were detected at >5sigma with the BAT experiment in 15-150 keV . No flux variability was detected within the XRT and BAT exposures, with the exception of 0836+710 which shows an increase of a factor 4 of the 15-150 keV flux on a timescale of one month. The 0.3-10 keV spectra are well fitted by power law models, with rather hard continua (photon indices Gamma_XRT ~1.3-1.5); similarly, the 15-150 keV spectra are described by power laws with Gamma_BAT ~1.3-1.8. The XRT data exhibit spectral curvature, which can be modeled either in terms of excess absorption along the line of sight, or a downward-curved broken power law. In the former case, if the excess N_H is at the rest-frame of the source, columns of N_H^z=(0.3-6)x10^22 cm^-2 are measured. Modeling of the SEDs of the four quasars shows that the emission at the higher frequencies, >~ 10^16 Hz, is dominated by the jet, while the steep optical-to-UV continua, observed with the UVOT, can be attributed to thermal emission from the accretion disk. The disk luminosity is between 1% and 10% the jet power, similar to other powerful blazars.
196 - G. Ghisellini 2015
The very existence of more than a dozen of high-redshift (z>4) blazars indicates that a much larger population of misaligned powerful jetted AGN was already in place when the Universe was <1.5 Gyr old. Such parent population proved to be very elusive , and escaped direct detection in radio surveys so far. High redshift blazars themselves seem to be failing in producing extended radio-lobes, raising questions about the connection between such class and the vaster population of radio-galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high redshift blazars and in their parent population, helping to explain the apparently missing misaligned counterparts of high redshift blazars. On the other hand, the emission from the more compact and more magnetised hot spots are less affected by the enhanced CMB energy density. By modelling the spectral energy distribution of blazar lobes and hot spots we find that most of them should be detectable by low frequency deep radio observations, e.g., by LOw-Frequency ARray for radio astronomy (LOFAR) and by relatively deep X-ray observations with good angular resolution, e.g., by the Chandra satellite. At high redshifts, the emission of a misaligned relativistic jet, being de-beamed, is missed by current large sky area surveys. The isotropic flux produced in the hot spots can be below ~1 mJy and the isotropic lobe radio emission is quenched by the CMB cooling. Consequently, even sources with very powerful jets can go undetected in current radio surveys, and misclassified as radio-quiet AGNs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا