On 9-11 May 1998, the highly-variable, low luminosity Seyfert 1 galaxy NGC4051 was observed in an unusual low flux state by BeppoSAX (Guainazzi et al. 1998) RXTE and EUVE. We present fits of the 4-15 keV RXTE spectrum and BeppoSAX MECS spectrum obtained during this observation, which are consistent with the interpretation that the source had switched off, leaving only the spectrum of pure reflection from distant cold matter. We place this result in context by showing the X-ray lightcurve of NGC4051 obtained by our RXTE monitoring campaign over the past two and a half years, which shows that the low state lasted for ~150 days before the May observations (implying that the reflecting material is > 10^17 cm from the continuum source) and forms part of a lightcurve showing distinct variations in long-term average flux over timescales > months. We show that the long-timescale component to X-ray variability is intrinsic to the primary continuum and is probably distinct from the variability at shorter timescales, possibly associated with variations in the accretion flow of matter onto the central black hole. As the source approaches the low state, the variability process becomes non-linear. NGC4051 may represent a microcosm of all X-ray variability in radio quiet active galactic nuclei (AGNs), displaying in a few years a variety of flux states and variability properties which more luminous AGNs may pass through on timescales of decades to thousands of years.