Ring waves of star formation, propagating outwardly in the galactic disks, leave chemical abundance gradients in their wakes. We show that the relative [Fe/O] abundance gradients in ring galaxies can be used as a tool for determining the role of the SNIa explosions in their chemical enrichment. We consider two mechanisms which can create outwardly propagating star forming rings in a purely gaseous disk -- a self-induced wave and a density wave, and demonstrate that the radial distribution of the relative [Fe/O] abundance gradients does not depend on the particular mechanism of the wave formation or on the parameters of the star-forming process. We show that the [Fe/O] profile is determined by the velocity of the wave, initial mass function, and the initial chemical composition of the star-forming gas. If the role of SNIa explosions is negligible in the chemical enrichment, the ratio [Fe/O] remains constant throughout the galactic disk with a steep gradient at the wave front. If SNIa stars are important in the production of cosmic iron, the [Fe/O] ratio has gradient in the wake of the star-forming wave with the value depending on the frequency of SNIa explosions.