ﻻ يوجد ملخص باللغة العربية
We have serendipitously discovered an extremely lithium-rich star on the red giant branch of the globular cluster M3 (NGC 5272). An echelle spectrum obtained with the Keck I HIRES reveals a Li I 6707 Angstrom resonance doublet of 520 milli-Angstrom equivalent width, and our analysis places the star among the most Li-rich giants known: log[epsilon(Li)] ~= +3.0. We determine the elemental abundances of this star, IV-101, and three other cluster members of similar luminosity and color, and conclude that IV-101 has abundance ratios typical of giants in M3 and M13 that have undergone significant mixing. We discuss mechanisms by which a low-mass star may be so enriched in Li, focusing on the mixing of material processed by the hydrogen-burning shell just below the convective envelope. While such enrichment could conceivably only happen rarely, it may in fact regularly occur during giant-branch evolution but be rarely detected because of rapid subsequent Li depletion.
Lithium rich stars in globular clusters are rare. In fact, only 14 have been found so far, in different evolutionary phases from dwarfs to giants. Different mechanisms have been proposed to explain this enhancement, but it is still an open problem. U
Aims: We report the discovery of a young lithium rich giant, HD 16771, in the core-helium burning phase that does not seem to fit existing proposals of Li synthesis near the luminosity function bump or during He-core flash. We aim to understand the n
We report on the discovery of the companion star to the millisecond pulsar J1342+2822B in the globular cluster M3. We exploited a combination of near-ultraviolet and optical observations acquired with the Hubble Space Telescope in order to search for
Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) s
We present the analysis of FEROS commissioning spectra of 3 giants in the metal poor cluster Be 21. One of the giants has an exceptionally high Li content, comparable to the original Li in the solar system. These objects are very rare (only a handful