ﻻ يوجد ملخص باللغة العربية
We present the results of a re-examination of a [Ne II] line emission data cube (lambda 12.8 mu m) and discuss the kinematic structure of the inner sim 3 times 4 pc of the Galaxy. The quality of [Ne II] as a tracer of ionized gas is examined by comparing it to radio data. A three dimensional representation of the data cube allows us to disentangle features which are projected onto the same location on the sky. A model of gas streams in different planes is fitted to the data. We find that most of the material is located in a main plane which itself is defined by the inner edge of the Circum-Nuclear Disk in the Galactic Center. Finally, we present a possible three dimensional model of the gas streams.
Integral field spectroscopy of the inner region of the Galactic Center, over a field of roughly 40x40 was obtained at 2.06 microns (He I) and 2.16 microns (Brackett-gamma) using BEAR, an imaging Fourier Transform Spectrometer, at spectral resolutions
We present two improved algorithms for weighted discrete $p$-center problem for tree networks with $n$ vertices. One of our proposed algorithms runs in $O(n log n + p log^2 n log(n/p))$ time. For all values of $p$, our algorithm thus runs as fast as
We performed, for the first time, the simulation of spiral-in of a star cluster formed close to the Galactic center (GC) using a fully self-consistent $N$-body model. In our model, the central super-massive black hole (SMBH) is surrounded by stars an
We discuss the stellar content of the Galactic Center, and in particular, recent estimates of the star formation rate (SFR). We discuss pros and cons of the different stellar tracers and focus our attention on the SFR based on the three classical Cep
Research on Galactic Center star formation is making great advances, in particular due to new data from interferometers spatially resolving molecular clouds in this environment. These new results are discussed in the context of established knowledge