ترغب بنشر مسار تعليمي؟ اضغط هنا

Ram Pressure Stripping of Spiral Galaxies in Clusters

107   0   0.0 ( 0 )
 نشر من قبل Mario G. Abadi
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mario G. Abadi




اسأل ChatGPT حول البحث

We use 3-dimensional SPH/N-BODY simulations to study ram pressure stripping of gas from spiral galaxies orbiting in clusters. We find that the analytic expectation of Gunn & Gott (1972) relating the gravitational restoring force provided by the disk to the ram pressure force, provides a good approximation to the radius that gas will be stripped from a galaxy. However, at small radii it is also important to consider the potential provided by the bulge component. A spiral galaxy passing through the core of a rich cluster such as Coma, will have its gaseous disk truncated to $sim 4$ kpc, thus losing $sim 80%$ of its diffuse gas mass. The timescale for this to occur is a fraction of a crossing time $sim 10^7$ years. Galaxies orbiting within poorer clusters, or inclined to the direction of motion through the intra-cluster medium will lose significantly less gas. We conclude that ram-pressure alone is insufficient to account for the rapid and widespread truncation of star-formation observed in cluster galaxies, or the morphological transformation of Sabs to S0s that is necessary to explain the Butcher-Oemler effect.



قيم البحث

اقرأ أيضاً

139 - E. Roediger 2009
While galaxies move through the intracluster medium of their host cluster, they experience a ram pressure which removes at least a significant part of their interstellar medium. This ram pressure stripping appears to be especially important for spira l galaxies: this scenario is a good candidate to explain the differences observed between cluster spirals in the nearby universe and their field counterparts. Thus, ram pressure stripping of disk galaxies in clusters has been studied intensively during the last decade. I review advances made in this area, concentrating on theoretical work, but continuously comparing to observations.
137 - P. Jachym , J. Koppen , J. Palous 2009
Ram pressure stripping of galaxies in clusters can yield gas deficient disks. Previous numerical simulations based on various approaches suggested that, except for near edge-on disk orientations, the amount of stripping depends very little on the inc lination angle. Following our previous study of face-on stripping, we extend the set of parameters with the disk tilt angle and explore in detail the effects of the ram pressure on the interstellar content (ISM) of tilted galaxies that orbit in various environments of clusters, with compact or extended distributions of the intra-cluster medium (ICM). We further study how results of numerical simulations could be estimated analytically. A grid of numerical simulations with varying parameters is produced using the tree/SPH code GADGET with a modified method for calculating the ISM-ICM interaction. These SPH calculations extend the set of existing results obtained from different codes using various numerical techniques. The simulations confirm the general trend of less stripping at orientations close to edge-on. The dependence on the disk tilt angle is more pronounced for compact ICM distributions, however it almost vanishes for strong ram pressure pulses. Although various hydrodynamical effects are present in the ISM-ICM interaction, the main quantitative stripping results appear to be roughly consistent with a simple scenario of momentum transfer from the encountered ICM. This behavior can also be found in previous simulations. To reproduce the numerical results we propose a fitting formula depending on the disk tilt angle and on the column density of the encountered ICM. Such a dependence is superior to that on the peak ram pressure used in previous simple estimates.
(Abridged) We perform high resolution 2D hydrodynamical simulations of face-on ram pressure stripping (RPS) of disk galaxies to compile a comprehensive parameter study varying galaxy properties (mass, vertical structure of the gas disk) and covering a large range of ICM conditions, reaching from high density environments like in cluster centres to low density environments typical for cluster outskirts or groups. We find that the ICM-ISM interaction proceeds in three phases: firstly the instantaneous stripping phase, secondly the dynamic intermediate phase, thirdly the quasi-stable continuous viscous stripping phase. The stripping efficiency depends slightly on the Mach number of the flow, however, the main parameter is the ram pressure. The stripping efficiency does not depend on the vertical structure and thickness of the gas disk. We discuss uncertainties in the classic estimate of the stripping radius of citet{gunn72}, and adapt the estimate used by cite{mori00} for spherical galaxies, (comparison of central pressure with ram pressure). We find that the latter estimate predicts the radius and mass of the gas disk remaining at the end of the second phase very well, and better than the citet{gunn72} criterion. From our simulations we conclude that gas disks of galaxies in high density environments are heavily truncated or even completely stripped, but also the gas disks of galaxies in low density environments are disturbed by the flow and back-falling material, so that they should also be pre-processed.
We present the first study of the effect of ram-pressure unwinding the spiral arms of cluster galaxies. We study 11 ram-pressure stripped galaxies from GASP (GAs Stripping Phenomena in galaxies) in which, in addition to more commonly observed jellyfi sh features, dislodged material also appears to retain the original structure of the spiral arms. Gravitational influence from neighbours is ruled out and we compare the sample with a control group of undisturbed spiral galaxies and simulated stripped galaxies. We first confirm the unwinding nature, finding the spiral arm pitch angle increases radially in 10 stripped galaxies and also simulated face-on and edge-on stripped galaxies. We find only younger stars in the unwound component, while older stars in the disc remain undisturbed. We compare the morphology and kinematics with simulated ram-pressure stripping galaxies, taking into account the estimated inclination with respect to the intracluster medium and find that in edge-on stripping, unwinding can occur due to differential ram-pressure caused by the disc rotation, causing stripped material to slow and pile-up. In face-on cases, gas removed from the outer edges falls to higher orbits, appearing to unwind. The pattern is fairly short-lived (<0.5Gyr) in the stripping process, occurring during first infall and eventually washed out by the ICM wind into the tail of the jellyfish galaxy. By comparing simulations with the observed sample, we find a combination of face-on and edge-on unwinding effects are likely to be occurring in our galaxies as they experience stripping with different inclinations with respect to the ICM.
Numerous examples of ram pressure stripping in galaxy clusters are present in literature; however, substantially less work has been focused on ram pressure stripping in lower mass groups. In this work we use the LOFAR Two-metre Sky Survey (LoTSS) to search for jellyfish galaxies in ~500 SDSS groups (z<0.05), making this the most comprehensive search for ram pressure stripping in groups to date. We identify 60 jellyfish galaxies in groups with extended, asymmetric radio continuum tails, which are found across the entire range of group mass from $10^{12.5} < M_mathrm{group} < 10^{14},h^{-1},mathrm{M_odot}$. We compare the group jellyfish galaxies identified in this work with the LoTSS jellyfish galaxies in clusters presented in Roberts et al. (2021), allowing us to compare the effects of ram pressure stripping across three decades in group/cluster mass. We find that jellyfish galaxies are most commonly found in clusters, with the frequency decreasing towards the lowest mass groups. Both the orientation of observed radio continuum tails, and the positions of group jellyfish galaxies in phase space, suggest that galaxies are stripped more slowly in groups relative to clusters. Finally, we find that the star formation rates of jellyfish galaxies in groups are consistent with `normal star-forming group galaxies, which is in contrast to cluster jellyfish galaxies that have clearly enhanced star formation rates. On the whole, there is clear evidence for ongoing ram pressure stripping in galaxy groups (down to very low group masses), though the frequency of jellyfish galaxies and the strength of ram pressure stripping appears smaller in groups than clusters. Differences in the efficiency of ram pressure stripping in groups versus clusters likely contributes to the positive trend between quenched fraction and host halo mass observed in the local Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا