ترغب بنشر مسار تعليمي؟ اضغط هنا

A Comparison of ground-based Cepheid P-L Relations with HIPPARCOS Parallaxes

98   0   0.0 ( 0 )
 نشر من قبل Holger Baumgardt
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The statistical test described by Wielen et al.(1994) is used to derive new zero-points of ground-based Cepheid period-luminosity (PL) and period-luminosity-colour (PLC) relations. Eleven relations are compared with the Hipparcos data. Our results argue for a typical increase of the adopted distance scale by about 8% +- 8%. Our zero-point for the PL relation of Caldwell & Laney (1991) is in agreement with that of Feast & Catchpole (1997).



قيم البحث

اقرأ أيضاً

The combination of HIPPARCOS measurements with suitable ground-based astrometric data improves significantly the accuracy of the proper motions of bright stars. The comparison of both types of data allows us also to identify and to eliminate, at leas t partially, cosmic errors in the quasi-instantaneously measured HIPPARCOS data which are caused by undetected astrometric binaries. We describe a simple averaging method for the combination of two independent compilation catalogues. The combination of the basic FK5 with HIPPARCOS leads to the Sixth Catalogue of Fundamental Stars (FK6). The accuracy of the FK6 proper motions is higher than that of HIPPARCOS by a factor of about 2 in the single-star mode, and by a factor of more than 4 in the long-term prediction mode which takes cosmic errors into account. We present also the error budget for a combination of the Boss General Catalogue (GC) with HIPPARCOS data. We point out problems with known binaries, and identify an ensemble of astrometrically excellent stars.
The tension between the Hipparcos parallax of the Pleiades and other independent distance estimates continues even after the new reduction of the Hipparcos astrometric data and the development of a new geometric distance measurement for the cluster. A short Pleiades distance from the Hipparcos parallax predicts a number of stars in the solar neighborhood that are sub-luminous at a given photospheric abundance. We test this hypothesis using spectroscopic abundances for a subset of stars in the Hipparcos catalog, which occupy the same region as the Pleiades in the color-magnitude diagram. We derive stellar parameters for 170 nearby G and K type field dwarfs in the Hipparcos catalog based on high-resolution spectra obtained using KPNO 4-m echelle spectrograph. Our analysis shows that, when the Hipparcos parallaxes are adopted, most of our sample stars follow empirical color-magnitude relations. A small fraction of stars are too faint compared to main-sequence fitting relations by $Delta M_V geq 0.3$ mag, but the differences are marginal at a $2sigma$ level partly due to relatively large parallax errors. On the other hand, we find that photometric distances of stars showing signatures of youth as determined from lithium absorption line strengths and $R_{rm HK}$ chromospheric activity indices are consistent with the Hipparcos parallaxes. Our result is contradictory to a suggestion that the Pleiades distance from main-sequence fitting is significantly altered by stellar activity and/or the young age of its stars, and provides an additional supporting evidence for the long distance scale of the Pleiades.
142 - S.E. Schroeder 2004
We compare the absolute visual magnitude of the majority of bright O stars in the sky as predicted from their spectral type with the absolute magnitude calculated from their apparent magnitude and the Hipparcos parallax. We find that many stars appea r to be much fainter than expected, up to five magnitudes. We find no evidence for a correlation between magnitude differences and the stellar rotational velocity as suggested for OB stars by Lamers et al. (1997), whose small sample of stars is partly included in ours. Instead, by means of a simulation we show how these differences arise naturally from the large distances at which O stars are located, and the level of precision of the parallax measurements achieved by Hipparcos. Straightforwardly deriving a distance from the Hipparcos parallax yields reliable results for one or two O stars only. We discuss several types of bias reported in the literature in connection with parallax samples (Lutz-Kelker, Malmquist) and investigate how they affect the O star sample. In addition, we test three absolute magnitude calibrations from the literature (Schmidt-Kaler et al. 1982; Howarth & Prinja 1989; Vacca et al. 1996) and find that they are consistent with the Hipparcos measurements. Although O stars conform nicely to the simulation, we notice that some B stars in the sample of Lamers et al. (1997) have a magnitude difference larger than expected.
We report the parallax and proper motion of five L dwarfs obtained with observations from the robotic Liverpool Telescope. Our derived proper motions are consistent with published values and have considerably smaller errors. Based on our spectral typ e versus absolute magnitude diagram, we do not find any evidence for binaries among our sample, or, at least no comparable mass binaries. Their space velocities locate them within the thin disk and based on the model comparisons they have solar-like abundances. For all five objects, we derived effective temperature, luminosity, radius, gravity and mass from a evolutionary model(CBA00) and our measured parallax; moreover, we derived their effective temperature by integrating observed optical and near-infrared spectra and model spectra (BSH06 or BT-Dusty respectively) at longer wavelengths to obtain bolometric {bf flux using} the classical Stefan-Boltzmann law: generally the three temperatures for one object derived using two different methods with three models are consistent, while at lower temperature(e.g. for L4) the differences among the three temperatures are slightly larger than that at higher temperature(e.g. for L1).
330 - Y. Wang , R.L. Smart , Z. Shao 2018
We report new parallax measurements for ten L and early T type dwarfs, five of which have no previous published values, using observations over 3 years at the robotic Liverpool Telescope. The resulting parallaxes and proper motions have median errors of 2,mas and 1.5,mas/year respectively. Their space motions indicate they are all Galactic disk members. We combined this sample with other objects with astrometry from the Liverpool Telescope and with published literature astrometry to construct a sample of 260 L and early T type dwarfs with measured parallaxes, designated the Astrometry Sample. We study the kinematics of the Astrometry Sample, and derived a solar motion of $(U,V,W)_{bigodot} = (7.9pm1.7,13.2pm1.2,7.2pm1.0)$,kms~ with respect to the local standard of rest, in agreement with recent literature. We derive a kinematic age of 1.5-1.7,Gyr for the Astrometry Sample assuming the age increases monotonically with the total velocity for a given disk sample. This kinematic age is less than half literature values for other low mass dwarf samples. We believe this difference arises for two reasons (1) the sample is mainly composed of mid to late L dwarfs which are expected to be relatively young and (2) the requirement that objects have a measured parallax biases the sample to the brighter examples which tend to be younger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا