ترغب بنشر مسار تعليمي؟ اضغط هنا

New catalogue of Wolf-Rayet galaxies and high-excitation extra-galactic HII regions

63   0   0.0 ( 0 )
 نشر من قبل Daniel Schaerer
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new compilation of Wolf-Rayet (WR) galaxies and extra-galactic HII regions showing BROAD HeII emission drawn from the literature. Relevant information on the presence of other broad emission lines (NIII 4640, CIV 5808 and others) from WR stars of WN and WC subtypes, and other existing broad nebular lines is provided. In total we include 139 known WR galaxies. Among these, 57 objects show both broad HeII and CIV features. In addition to the broad (stellar) HeII emission, a NEBULAR HeII component is well established (suspected) in 44 (54) objects. We find 19 extra-galatic HII regions without WR detections showing nebular HeII emission. The present sample can be used for a variety of studies on massive stars, interactions of massive stars with the ISM, stellar populations, starburst galaxies etc. The data is accessible electronically and will be updated periodicaly.



قيم البحث

اقرأ أيضاً

Wolf-Rayet (WR) HII galaxies are local metal-poor star-forming galaxies, observed when the most massive stars are evolving from O stars to WR stars, making them template systems to study distant starbursts. We have been performing a program to invest igate the interplay between massive stars and gas in WR HII galaxies using IFS. Here, we highlight some results from the first 3D spectroscopic study of Mrk 178, the closest metal-poor WR HII galaxy, focusing on the origin of the nebular HeII emission and the aperture effects on the detection of WR features.
190 - A. Roman-Lopes 2011
In this work I communicate the detection of a new Galactic Wolf-Rayet star (WR60a) in Centaurus. The H- and K-band spectra of WR60a, show strong carbon near-infrared emission lines, characteristic of Wolf-Rayet stars of the WC5-7 sub-type. Adopting m ean absolute magnitude M$_K$ and mean intrinsic ($J-K_S$) and ($H-K_S$) colours, it was found that WR60a suffer a mean visual extinction of 3.8$pm$1.3 magnitudes, being located at a probable heliocentric distance of 5.2$pm$0.8 Kpc, which for the related Galactic longitude (l=312) puts this star probably in the Carina-Sagittarius arm at about 5.9 kpc from the Galactic center. I searched for clusters in the vicinity of WR60a, and in principle found no previously known clusters in a search radius region of several tens arc-minutes. The detection of a well isolated WR star induced us to seek for some still unknown cluster, somewhere in the vicinity of WR60a. From inspection of 5.8$mu$m and 8.0$mu$m Spitzer/IRAC GLIMPSE images of the region around the new WR star, it was found strong mid-infrared extended emission at about 13.5 arcmin south-west of WR60a. The study of the the H-K$_S$ colour distribution of point sources associated with the extended emission, reveals the presence of a new Galactic cluster candidate probably formed by at least 85 stars.
We present a study of the properties of star-forming regions within a sample of 7 Wolf-Rayet (WR) galaxies. We analyze their morphologies, colours, star-formation rate (SFR), metallicities, and stellar populations combining broad-band and narrow-band photometry with low-resolution optical spectroscopy. The $UBVRI$ observations were made through the 2m HCT (Himalayan Chandra Telescope) and 1m ARIES telescope. The spectroscopic data were obtained using the Hanle Faint Object Spectrograph Camera (HFOSC) mounted on the 2m HCT. The observed galaxies are NGC 1140, IRAS 07164+5301, NGC 3738, UM 311, NGC 6764, NGC 4861 and NGC 3003. The optical spectra have been used to search for the faint WR features, to confirm that the ionization of the gas is consequence of the massive stars, and to quantify the oxygen abundance of each galaxy using several and independent empirical calibrations. We detected the broad features originated by WR stars in NGC 1140 and NGC 4861 and used them to derive their population of massive stars. Using our H$alpha$ images we have identified tens of regions within these galaxies, for which we derived the SFR. For all regions we found that the most recent star-formation event is 3 - 6 Myr old. We used the optical broad-band colours in combination with Starburst99 models to estimate the internal reddening and the age of the dominant underlying stellar population within all these regions. Knots in NGC 3738, NGC 6764 and NGC 3003 generally show the presence of an important old (400 - 1000 Myr) stellar population. However, the optical colours are not able to detect stars older than 20 - 50 Myr in the knots of the other four galaxies. This fact suggests both the intensity of the starbursts and that the star-formation activity has been ongoing for at least some few tens of million years in these objects.
78 - M. A. Bransford 1999
We present the results of an ongoing investigation to provide a detailed view of the processes by which massive stars shape the surrounding interstellar medium (ISM), from pc to kpc scales. In this paper we have focused on studying the environments o f Wolf-Rayet (WR) stars in M31 to find evidence for WR wind-ISM interactions, through imaging ionized hydrogen nebulae surrounding these stars. We have conducted a systematic survey for HII shells surrounding 48 of the 49 known WR stars in M31. There are 17 WR stars surrounded by single shells, or shell fragments, 7 stars surrounded by concentric limb brightened shells, 20 stars where there is no clear physical association of the star with nearby H-alpha emission, and 4 stars which lack nearby H-alpha emission. For the 17+7 shells above, there are 12 which contain one or two massive stars (including a WR star) and that are <=40 pc in radius. These 12 shells may be classical WR ejecta or wind-blown shells. Further, there may be excess H-alpha point source emission associated with one of the 12 WR stars surrounded by putative ejecta or wind-blown shells. There is also evidence for excess point source emission associated with 11 other WR stars. The excess emission may arise from unresolved circumstellar shells, or within the extended outer envelopes of the stars themselves. In a few cases we find clear morphological evidence for WR shells interacting with each other. In several H-alpha images we see WR winds disrupting, or punching through, the walls of limb-brightened HII shells.
We present optical spectra of 14 emission-line stars in M33s giant HII regions NGC 592, NGC 595 and NGC 604: five of them are known WR stars, for which we present a better quality spectrogram, eight were WR candidates based on narrow-band imagery and one is a serendipitous discovery. Spectroscopy confirms the power of interference filter imagery to detect emission-line stars down to an equivalent width of about 5 A in crowded fields. We have also used archival HST/WFPC2 images to correctly identify emission-line stars in NGC 592 and NGC 588. emission-line stars in NGC 592 and NGC 588.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا