ترغب بنشر مسار تعليمي؟ اضغط هنا

The Evolution of Barred Spiral Galaxies in the Hubble Deep Fields North and South

50   0   0.0 ( 0 )
 نشر من قبل Roberto Abraham
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. G. Abraham




اسأل ChatGPT حول البحث

The frequency of barred spiral galaxies as a function of redshift contains important information on the gravitational influence of stellar disks in their dark matter halos and also may distinguish between contemporary theories for the origin of galactic bulges. In this paper we present a new quantitative method for determining the strength of barred spiral structure, and verify its robustness to redshift-dependent effects. By combining galaxy samples from the Hubble Deep Field North with newly available data from the Hubble Deep Field South, we are able to define a statistical sample of 18 objectively-defined low-inclination barred spiral systems with $I_{814W}<23.2$ mag. Analysing the proportion of barred spiral galaxies seen as a function of redshift, we find a significant decline in the barred fraction beyond redshifts $zsimeq 0.5$. The physical significance of this effect remains unclear, but several possibilities include dynamically hotter (or increasingly dark-matter dominated) high-redshift discs, or an enhanced efficiency in bar destruction at high redshifts. By investigating the formation of the ``orthogonal axis of Hubbles classification tuning fork, our result complements studies of evolution in the early--late sequence, and pushes to later epochs the redshift at which the Hubble classification sequence is observed to be in place.



قيم البحث

اقرأ أيضاً

We present the 2.12~$mu$m narrow-band image of the Hubble Deep Field North taken with the near-infrared camera (CISCO) on the Subaru telescope. Among five targets whose H$alpha$ or [O~{sc iii}] emission lines are redshifted into our narrow-band range expected from their spectroscopic redshift, four of them have strong emission lines, especially for the two [O~{sc iii}] emission-line objects. The remaining one target shows no H$alpha$ emission in spite of its bright rest-UV luminosity, indicating that this object is already under the post-starburst phase. The volume-averaged $SFR$ derived from the detected two H$alpha$ emission is roughly consistent with that evaluated from the rest-UV continuum.
We propose a new theory to explain the formation of spiral arms and of all types of outer rings in barred galaxies. We have extended and applied the technique used in celestial mechanics to compute transfer orbits. Thus, our theory is based on the ch aotic orbital motion driven by the invariant manifolds associated to the periodic orbits around the hyperbolic equilibrium points. In particular, spiral arms and outer rings are related to the presence of heteroclinic or homoclinic orbits. Thus, R1 rings are associated to the presence of heteroclinic orbits, while R1R2 rings are associated to the presence of homoclinic orbits. Spiral arms and R2 rings, however, appear when there exist neither heteroclinic nor homoclinic orbits. We examine the parameter space of three realistic, yet simple, barred galaxy models and discuss the formation of the different morphologies according to the properties of the galaxy model. The different morphologies arise from differences in the dynamical parameters of the galaxy.
Clump clusters and chain galaxies in the Hubble Ultra Deep Field are examined for bulges in the NICMOS images. Approximately 50% of the clump clusters and 30% of the chains have relatively red and massive clumps that could be young bulges. Magnitudes and colors are determined for these bulge-like objects and for the bulges in spiral galaxies, and for all of the prominent star-formation clumps in these three galaxy types. The colors are fitted to population evolution models to determine the bulge and clump masses, ages, star-formation rate decay times, and extinctions. The results indicate that bulge-like objects in clump cluster and chain galaxies have similar ages and 2 to 5 times larger masses compared to the star-formation clumps, while the bulges in spirals have ~6 times larger ages and 20 to 30 times larger masses than the clumps. All systems appear to have an underlying red disk population. The masses of star-forming clumps are typically in a range from 10^7 to 10^8 Msun; their ages have a wide range around ~10^2 Myr. Ages and extinctions both decrease with redshift. Star formation is probably the result of gravitational instabilities in the disk gas, in which case the large clump mass in the UDF is the result of a high gas velocity dispersion, 30 km/s or more, combined with a high gas mass column density, ~100 Msun/pc^2. Because clump clusters and chains dominate disk galaxies beyond z~1, the observations suggest that these types represent an early phase in the formation of modern spiral galaxies, when the bulge and inner disk formed.
239 - S. Komugi , Y. Sofue , K. Kohno 2008
We present results from a survey of 12CO(J=1-0) spectra obtained for the central regions of 68 nearby galaxies at an angular resolution of 16 arcseconds using the Nobeyama Radio Observatory 45m telescope, aimed at characterizing the properties of sta r forming molecular gas. Combined with similar resolution observations in the literature, the compiled sample set of 166 galaxies span a wide range of galactic properties. NGC 4380, which was previously undetected in CO, was detected. This initial paper of a series will focus on the data and the gaseous properties of the samples, and particularly on the degree of central concentration of molecular gas in a range of morphological types, from early (S0/Sa) to late (Sd/Sm) galaxies with and without bars. The degree of molecular central concentration in the central kiloparsec, compared to the central several kiloparsecs of galaxies, is found to vary smoothly with Hubble type, so that early type galaxies show larger central concentration. The comparison of barred and non-barred galaxies within early and late type galaxies suggest that difference in Hubble type, representing the effect of bulges, is the more important factor in concentrating gas into the central regions than bars.
162 - N. Kuno , N. Sato , H. Nakanishi 2007
The data from a CO(1 - 0) mapping survey of 40 nearby spiral galaxies performed with the Nobeyama 45-m telescope are presented. The criteria of the sample selection were (1) RC3 morphological type in the range Sa to Scd, (2) distance less than 25 Mpc , (3) inclination angle less than 79deg (RC3), (4) flux at 100 um higher than ~ 10 Jy, (5) spiral structure is not destroyed by interaction. The maps of CO cover most of the optical disk of the galaxies. We investigated the influence of bar on the distribution of molecular gas in spiral galaxies using these data. We confirmed that the degree of central concentration is higher in barred spirals than in non-barred spirals as shown by the previous works. Furthermore, we present an observational evidence that bars are efficient in driving molecular gas that lies within the bar length toward the center, while the role in bringing gas in from the outer parts of the disks is small. The transported gas accounts for about half of molecular gas within the central region in barred spiral galaxies. We found a correlation between the degree of central concentration and bar strength. Galaxies with stronger bars tend to have higher central concentration. The correlation implies that stronger bars accumulate molecular gas toward the center more efficiently. These results are consistent with long-lived bars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا