ﻻ يوجد ملخص باللغة العربية
We consider several processes operating during the late stages of planet formation that can affect observed orbital elements. Disk-planet interactions, tidal interactions with the central star, long term orbital instability and the Kozai mechanism are discussed.
In this article we present results from three on-going projects related to the formation of protoplanets in protostellar discs. We present the results of simulations that model the interaction between embedded protoplanets and disc models undergoing
We have investigated i) the formation of gravitationally bounded pairs of gas-giant planets (which we call binary planets) from capturing each other through planet-planet dynamical tide during their close encounters and ii) the following long-term or
During the process of planet formation, the planet-discs interactions might excite (or damp) the orbital eccentricity of the planet. In this paper, we present two long ($tsim 3times 10^5$ orbits) numerical simulations: (a) one (with a relatively ligh
We present high-spatial resolution HST and adaptive optics observations, and high-sensitivity ISO (ISOCAM & ISOPHOT) observations of a sample of X-ray selected weak-line (WTTS) and post (PTTS) T Tauri stars located in the nearby Chamaeleon T and Scor
We perform numerical simulations of the TRAPPIST-1 system of seven exoplanets orbiting a nearby M dwarf, starting with a previously suggested stable configuration. The long-term stability of this configuration is confirmed, but the motion of planets