ترغب بنشر مسار تعليمي؟ اضغط هنا

Energetics and beaming of gamma-ray burst triggers

105   0   0.0 ( 0 )
 نشر من قبل Ralph Wijers
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A wide range of mechanisms have been proposed to supply the energy for gamma-ray bursts (GRB) at cosmological distances. It is a common misconception that some of these, notably NS-NS mergers, cannot meet the energy requirements suggested by recent observations. We show here that GRB energies, even at the most distant redshifts detected, are compatible with current binary merger or collapse scenarios involving compact objects. This is especially so if, as expected, there is a moderate amount of beaming, since current observations constrain the energy per solid angle much more strongly and directly than the total energy. All plausible progenitors, ranging from NS-NS mergers to various hypernova-like scenarios, eventually lead to the formation of a black hole with a debris torus around it, so that the extractable energy is of the same order, 1E+54 ergs, in all cases. MHD conversion of gravitational into kinetic and radiation energy can significantly increase the probability of observing large photon fluxes, although significant collimation may achieve the same effect with neutrino annihilation in short bursts. The lifetime of the debris torus is dictated by a variety of physical processes, such as viscous accretion and various instabilities; these mechanisms dominate at different stages in the evolution of the torus and provide for a range of gamma-ray burst lifetimes.



قيم البحث

اقرأ أيضاً

359 - T. Savolainen 2009
We investigate the dependence of gamma-ray brightness of blazars on intrinsic properties of their parsec-scale radio jets and the implication for relativistic beaming. By combining apparent jet speeds derived from high-resolution VLBA images from the MOJAVE program with millimetre-wavelength flux density monitoring data from Metsahovi Radio Observatory, we estimate the jet Doppler factors, Lorentz factors, and viewing angles for a sample of 62 blazars. We study the trends in these quantities between the sources which were detected in gamma-rays by the Fermi Large Area Telescope (LAT) during its first three months of science operations and those which were not detected. The LAT-detected blazars have on average higher Doppler factors than non-LAT-detected blazars, as has been implied indirectly in several earlier studies. We find statistically significant differences in the viewing angle distributions between gamma-ray bright and weak sources. Most interestingly, gamma-ray bright blazars have a distribution of comoving frame viewing angles that is significantly narrower than that of gamma-ray weak blazars and centred roughly perpendicular to the jet axis. The lack of gamma-ray bright blazars at large comoving frame viewing angles can be explained by relativistic beaming of gamma-rays, while the apparent lack of gamma-ray bright blazars at small comoving frame viewing angles, if confirmed with larger samples, may suggest an intrinsic anisotropy or Lorentz factor dependence of the gamma-ray emission.
Afterglow, or long-lived emission, has now been detected from about a dozen well-positioned gamma-ray bursts. Distance determinations made by measuring optical emission lines from the host galaxy, or absorption lines in the afterglow spectrum, place the burst sources at significant cosmological distances, with redshifts ranging from ~1--3. The energy required to produce the bright gamma-ray flashes is enormous: up to ~10^{53} erg or 10 percent of the rest mass energy of a neutron star, if the emission is isotropic. Here we present the discovery of the optical afterglow and the redshift of GRB 990123, the brightest well-localized GRB to date. With our measured redshift of >1.6, the inferred isotropic energy release exceeds the rest mass of a neutron star thereby challenging current theoretical models for the origin of GRBs. We argue that the optical and IR afterglow measurements reported here may provide the first observational evidence of beaming in a GRB, thereby reducing the required energetics to a level where stellar death models are still tenable.
86 - Y.F. Huang 2002
Based on a refined generic dynamical model, we investigate afterglows from jetted gamma-ray burst (GRB) remnants numerically. In the relativistic phase, the light curve break could marginally be seen. However, an obvious break does exist at the trans ition from the relativistic phase to the non-relativistic phase, which typically occurs at time 10 to 30 days. It is very interesting that the break is affected by many parameters, especially by the electron energy fraction (xi_e), and the magnetic energy fraction (xi_B^2). Implication of orphan afterglow surveys on GRB beaming is investigated. The possible existence of a kind of cylindrical jets is also discussed.
The first binary neutron star merger, GW170817, was accompanied by a radioactivity-powered optical/infrared transient called a kilonova. To date, no compelling kilonova has been found during optical surveys of the sky, independent of gravitational-wa ve triggers. In this work, we searched the first 23 months of the Zwicky Transient Facility (ZTF) data stream for candidate kilonovae in the form of rapidly evolving transients. We combined ZTF alert queries with forced point-spread-function photometry and nightly flux stacking to increase our sensitivity to faint and fast transients. Automatic queries yielded $>11,200$ candidates, 24 of which passed quality checks and strict selection criteria based on a grid of kilonova models tailored for both binary neutron star and neutron star-black hole mergers. None of the candidates in our sample was deemed a possible kilonova after thorough vetting, catalog cross-matching, and study of their color evolution. The sources that passed our selection criteria are dominated by Galactic cataclysmic variables. In addition, we identified two fast transients at high Galactic latitude, one of which is the confirmed afterglow of long-duration GRB190106A, and the other is a possible cosmological afterglow. Using a survey simulation code, we constrained the kilonova rate for a range of models including top-hat and linearly decaying light curves and synthetic light curves obtained with radiative transfer simulations. For prototypical GW170817-like kilonovae, we constrain the rate to be $R < 1775$ Gpc$^{-3}$ yr$^{-1}$ at 95% confidence level by requiring at least 2 high-significance detections. By assuming a population of kilonovae with the same geometry and composition of GW170817 observed under a uniform viewing angle distribution, we obtained a constraint on the rate of $R < 4029$ Gpc$^{-3}$ yr$^{-1}$.
We present detailed calculations of nonthermal synchrotron and synchrotron self-Compton (SSC) spectra radiated by blast waves that are energized by interactions with a uniform surrounding medium. Radio, optical, X-ray and gamma-ray light curves and s pectral indices are calculated for a standard parameter set that yields hard GRB spectra during the prompt emission phase. Because no lateral spreading of the blast-wave is assumed, the calculated temporal breaks represent the sharpest breaks possible from collimated outflows in a uniform surrounding medium. Absence of SSC hardenings in observed GRB X-ray afterglows indicates magnetic field generation toward equipartition as the blast wave evolves. EGRET detections of 100 MeV-GeV photons observed promptly and 90 minutes after GRB 940217 are attributed to nonthermal synchrotron radiation and SSC emission from a decelerating blast wave, respectively. The SSC process will produce prompt TeV emission that could be observed from GRBs with redshifts $z lesssim 0.1$, provided $gamma$-$gamma$ opacity in the source is small. Measurements of the time dependence of the 100 MeV-GeV spectral indices with the planned {it GLAST} mission will chart the evolution of the SSC component and test the external shock scenario. Transient optical and X-ray emissions from misaligned GRBs are generally much weaker than on-axis emissions produced by dirty and clean fireballs that would themselves not trigger a GRB detector; thus detection of long wavelength transients not associated with GRBs will not unambiguously demonstrate GRB beaming.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا