ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of Prototype Pixellated PIN CdZnTe Detectors

60   0   0.0 ( 0 )
 نشر من قبل Tomohiko Narita
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Narita




اسأل ChatGPT حول البحث

We report initial results from the design and evaluation of two pixellated PIN Cadmium Zinc Telluride detectors and an ASIC-based readout system. The prototype imaging PIN detectors consist of 4X4 1.5 mm square indium anode contacts with 0.2 mm spacing and a solid cathode plane on 10X10 mm CdZnTe substrates of thickness 2 mm and 5 mm. The detector readout system, based on low noise preamplifier ASICs, allows for parallel readout of all channels upon cathode trigger. This prototype is under development for use in future astrophysical hard X-ray imagers with 10-600 keV energy response. Measurements of the detector uniformity, spatial resolution, and spectral resolution will be discussed and compared with a similar pixellated MSM detector. Finally, a prototype design for a large imaging array is outlined.



قيم البحث

اقرأ أيضاً

112 - Y. P. Zhang , J. C. Liu , C. Guo 2017
The radioactive noble gas $^{222}$Rn, which can be dissolved in water, is an important background source for JUNO. In this paper, based on the water system of JUNO prototype, two kinds of high sensitivity radon detectors have been proposed and develo ped. The sensitivity of Si-PIN Rn detector, which uses a Si-PIN photodiode to detect the $alpha$ from $^{214}$Po decay, is $sim$9.0~mBq/m$^3$. The sensitivity of LS Rn detector, which uses liquid scintillator to detect the coincident signals of $beta$ from $^{214}$Bi decay and $alpha$ from $^{214}$Po decay, is $sim$64.0~mBq/m$^3$. Both of the two kinds of Rn detector have the potential to be developed as an online Rn concentration monitoring equipment for JUNO veto detector.
This paper proposes an adaptive pin-array fixture. The key idea of this research is to use the shape-memorable mechanism of pin array to fix multiple different shaped parts with common pin configuration. The clamping area consists of a matrix of pass ively slid-able pins that conform themselves to the contour of the target object. Vertical motion of the pins enables the fixture to encase the profile of the object. The shape memorable mechanism is realized by the combination of the rubber bush and fixing mechanism of a pin. Several physical peg-in-hole tasks is conducted to verify the feasibility of the fixture.
The use of GEM foils for the amplification stage of a TPC instead of a con- ventional MWPC allows one to bypass the necessity of gating, as the backdrift is suppressed thanks to the asymmetric field configuration. This way, a novel continuously runni ng TPC, which represents one option for the PANDA central tracker, can be realized. A medium sized prototype with a diameter of 300 mm and a length of 600 mm will be tested inside the FOPI spectrometer at GSI using a carbon or lithium beam at intermediate energies (E = 1-3AGeV). This detector test under realistic experimental conditions should allow us to verify the spatial resolution for single tracks and the reconstruction capability for displaced vertexes. A series of physics measurement implying pion beams is scheduled with the FOPI spectrometer together with the GEM-TPC as well.
We studied the effects of bulk and surface conductivity on the performance of high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize the difference in mechanisms of the bulk and surface conductivity as indicated by their differe nt temperature behaviors. In addition, the existence of a thin (10-100 A) oxide layer on the surface of CZT, formed during the fabrication process, affects both bulk and surface leakage currents. We demonstrate that the measured I-V dependencies of bulk current can be explained by considering the CZT detector as a metal-semiconductor-metal system with two back-to-back Schottky-barrier contacts. The high surface leakage current is apparently due to the presence of a low-resistivity surface layer that has characteristics which differ considerably from those of the bulk material. This surface layer has a profound effect on the charge collection efficiency in detectors with multi-contact geometry; some fraction of the electric field lines originated on the cathode intersects the surface areas between the pixel contacts where the charge produced by an ionizing particle gets trapped. To overcome this effect we place a grid of thin electrodes between the pixel contacts; when the grid is negatively biased, the strong electric field in the gaps between the pixels forces the electrons landing on the surface to move toward the contacts, preventing the charge loss. We have investigated these effects by using CZT pixel detectors indium bump bonded to a custom-built VLSI readout chip.
Events near the cathode and anode surfaces of a coplanar grid CdZnTe detector are identifiable by means of the interaction depth information encoded in the signal amplitudes. However, the amplitudes cannot be used to identify events near the lateral surfaces. In this paper a method is described to identify lateral surface events by means of their pulse shapes. Such identification allows for discrimination of surface alpha particle interactions from more penetrating forms of radiation, which is particularly important for rare event searches. The effectiveness of the presented technique in suppressing backgrounds due to alpha contamination in the search for neutrinoless double beta decay with the COBRA experiment is demonstrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا