ترغب بنشر مسار تعليمي؟ اضغط هنا

Semianalytic modelling of the formation and evolution of galaxies

92   0   0.0 ( 0 )
 نشر من قبل Carlton M. Baugh
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C.M. Baugh




اسأل ChatGPT حول البحث

The high redshift observations of galaxies now becoming available from the Hubble Space Telescope and from large ground based telescopes are opening fresh windows on galaxy formation. Semianalytic models of galaxy formation provide us with a powerful tool to interpret and understand these exciting new data. In this review, we explain the philosophy behind this class of model and outline some of their remarkable successes, focussing our attention on the formation of elliptical galaxies and on the properties of galaxies at high redshift. Now that the recent discovery of star forming galaxies at z=3 has made possible the construction of the cosmic star formation history, which is in good agreement with our model predictions, it appears that a coherent, broadbrush picture of galaxy formation is beginning to emerge.



قيم البحث

اقرأ أيضاً

Chemo-dynamical N-body simulations are an essential tool for understanding the formation and evolution of galaxies. As the number of observationally determined stellar abundances continues to climb, these simulations are able to provide new constrain ts on the early star formaton history and chemical evolution inside both the Milky Way and Local Group dwarf galaxies. Here, we aim to reproduce the low $alpha$-element scatter observed in metal-poor stars. We first demonstrate that as stellar particles inside simulations drop below a mass threshold, increases in the resolution produce an unacceptably large scatter as one particle is no longer a good approximation of an entire stellar population. This threshold occurs at around $10^3,rm{M_odot}$, a mass limit easily reached in current (and future) simulations. By simulating the Sextans and Fornax dwarf spheroidal galaxies we show that this increase in scatter at high resolutions arises from stochastic supernovae explosions. In order to reduce this scatter down to the observed value, we show the necessity of introducing a metal mixing scheme into particle-based simulations. The impact of the method used to inject the metals into the surrounding gas is also discussed. We finally summarise the best approach for accurately reproducing the scatter in simulations of both Local Group dwarf galaxies and in the Milky Way.
We model formation and evolution of transverse dune fields. In the model, only the cross section of the dune is simulated. The only physical variable of relevance is the dune height, from which the dune width and velocity are determined, as well as p henomenological rules for interaction between two dunes of different heights. We find that dune fields with no sand on the ground between dunes are unstable, i.e. small dunes leave the higher ones behind. We then introduce a saturation length to simulate transverse dunes on a sand bed and show that this leads to stable dune fields with regular spacing and dune heights. Finally, we show that our model can be used to simulate coastal dune fields if a constant sand influx is considered, where the dune height increases with the distance from the beach, reaching a constant value.
We present a variation of the recently updated Munich semi-analytical galaxy formation model, L-Galaxies, with a new gas stripping method. Extending earlier work, we directly measure the local environmental properties of galaxies to formulate a more accurate treatment of ram-pressure stripping for all galaxies. We fully re-calibrate the modified L-Galaxies model using a Markov Chain Monte Carlo (MCMC) method with the stellar mass function and quenched fraction of galaxies at $0leq zleq2$ as constraints. Due to this re-calibration, global galaxy population relations, including the stellar mass function, quenched fractions versus galaxy mass and HI mass function are all largely unchanged and remain consistent with observations. By comparing to data on galaxy properties in different environments from the SDSS and HSC surveys, we demonstrate that our modified model improves the agreement with the quenched fractions and star formation rates of galaxies as a function of environment, stellar mass, and redshift. Overall, in the vicinity of haloes with total mass $10^{12}$ to $10^{15}rm M_{odot}$ at $z=0$, our new model produces higher quenched fractions and stronger environmental dependencies, better recovering observed trends with halocentric distance up to several virial radii. By analysing the actual amount of gas stripped from galaxies in our model, we show that those in the vicinity of massive haloes lose a large fraction of their hot halo gas before they become satellites. We demonstrate that this affects galaxy quenching both within and beyond the halo boundary. This is likely to influence the correlations between galaxies up to tens of megaparsecs.
400 - G. Martin , S. Kaviraj , C. Laigle 2019
Our statistical understanding of galaxy evolution is fundamentally driven by objects that lie above the surface-brightness limits of current wide-area surveys (mu ~ 23 mag arcsec^-2). While both theory and small, deep surveys have hinted at a rich po pulation of low-surface-brightness galaxies (LSBGs) fainter than these limits, their formation remains poorly understood. We use Horizon-AGN, a cosmological hydrodynamical simulation to study how LSBGs, and in particular the population of ultra-diffuse galaxies (UDGs; mu > 24.5 mag arcsec^-2), form and evolve over time. For M* > 10^8 MSun, LSBGs contribute 47, 7 and 6 per cent of the local number, mass and luminosity densities respectively (~85/11/10 per cent for M* > 10^7 MSun). Todays LSBGs have similar dark-matter fractions and angular momenta to high-surface-brightness galaxies (HSBGs; mu < 23 mag arcsec^-2), but larger effective radii (x2.5 for UDGs) and lower fractions of dense, star-forming gas (more than x6 less in UDGs than HSBGs). LSBGs originate from the same progenitors as HSBGs at z > 2. However, LSBG progenitors form stars more rapidly at early epochs. The higher resultant rate of supernova-energy injection flattens their gas-density profiles, which, in turn, creates shallower stellar profiles that are more susceptible to tidal processes. After z ~ 1, tidal perturbations broaden LSBG stellar distributions and heat their cold gas, creating the diffuse, largely gas-poor LSBGs seen today. In clusters, ram-pressure stripping provides an additional mechanism that assists in gas removal in LSBG progenitors. Our results offer insights into the formation of a galaxy population that is central to a complete understanding of galaxy evolution, and which will be a key topic of research using new and forthcoming deep-wide surveys.
We present new fully self-consistent models of the formation and evolution of isolated dwarf galaxies. We have used the publicly available N-body/SPH code HYDRA, to which we have added a set of star formation criteria, and prescriptions for chemical enrichment (taking into account contributions from both SNIa and SNII), supernova feedback, and gas cooling. The models follow the evolution of an initially homogeneous gas cloud collapsing in a pre-existing dark-matter halo. These simplified initial conditions are supported by the merger trees of isolated dwarf galaxies extracted from the milli-Millennium Simulation. The star-formation histories of the model galaxies exhibit burst-like behaviour. These bursts are a consequence of the blow-out and subsequent in-fall of gas. The amount of gas that leaves the galaxy for good is found to be small, in absolute numbers, ranging between 3x10^7 Msol and 6x10^7 Msol . For the least massive models, however, this is over 80 per cent of their initial gas mass. The local fluctuations in gas density are strong enough to trigger star-bursts in the massive models, or to inhibit anything more than small residual star formation for the less massive models. Between these star-bursts there can be time intervals of several Gyrs. We have compared model predictions with available data for the relations between luminosity and surface brightness profile, half-light radius, central velocity dispersion, broad band colour (B-V) and metallicity, as well as the location relative to the fundamental plane. The properties of the model dwarf galaxies agree quite well with those of observed dwarf galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا