ﻻ يوجد ملخص باللغة العربية
The BeppoSAX satellite has recently opened a new way towards the solution of the long standing gamma-ray bursts (GRBs) enigma, providing accurate coordinates few hours after the event thus allowing for multiwavelength follow-up observational campaigns. The BeppoSAX Narrow Field Instruments observed the region of sky containing GRB970111 16 hours after the burst. In contrast to other GRBs observed by BeppoSAX no bright afterglow was unambiguously observed. A faint source (1SAXJ1528.1+1937) is detected in a position consistent with the BeppoSAX Wide Field Camera position, but unconsistent with the IPN annulus. Whether 1SAXJ1528.1+1937 is associated with GRB970111 or not, the X-ray intensity of the afterglow is significantly lower than expected, based on the properties of the other BeppoSAX GRB afterglows. Given that GRB970111 is one of the brightest GRBs observed, this implies that there is no obvious relation between the GRB gamma-ray peak flux and the intensity of the X-ray afterglow.
We present the X-ray afterglow catalog of BeppoSAX from the launch of the satellite to the end of the mission. Thirty-three X-ray afterglows were securely identified based on their fading behavior out of 39 observations. We have extracted the continu
We present BeppoSAX GRBM and WFC light curves of GRB980425 and NFI follow-up data taken in 1998 April, May, and November. The first NFI observation has detected within the 8 radius error box of the GRB an X-ray source positionally consistent with the
We review Gamma-Ray Burst (GRB) afterglow follow-up observations being carried out by our group in Korea. We have been performing GRB follow-up observations using the 4-m UKIRT in Hawaii, the 2.1-m telescope at the McDonald observatory in Texas, the
Most violent and energetic processes in our universe, including mergers of compact objects, explosions of massive stars and extreme accretion events, produce copious amounts of X-rays. X-ray follow-up is an efficient tool for identifying transients b
We studied the soft-X-ray emission of five hard-X sources: IGR J08262-3736, IGR J17354-3255, IGR J16328-4726, SAX J1818.6-1703 and IGR J17348-2045. These sources are: a confirmed supergiant high mass X-ray binary (IGR J08262-3736); candidates (IGR J1