ﻻ يوجد ملخص باللغة العربية
We present ASCA temperature profiles and, when possible, crude temperature maps for a sample of bright clusters with 0.04<z<0.09. Together with several previously published clusters, the sample includes A85, A119, A399, A401, A478, A644, A754, A780, A1650, A1651, A1795, A2029, A2065, A2142, A2256, A2319, A2597, A2657, A3112, A3266, A3376, A3391, A3395, A3558, A3571, A3667, A4059, Cygnus A, MKW3S, and Triangulum Australis. Nearly all clusters show a significant radial temperature decline. For a typical 7 keV cluster, the temperature decline between 1 and 6 X-ray core radii (0.15 and 0.9/h Mpc) can be approximately quantified by a polytropic index of 1.2-1.3. Assuming such a polytropic temperature profile, the gravitating mass within 1 and within 6 core radii is approximately 1.35 and 0.7 times the isothermal beta-model estimates, respectively. Most interestingly, we find that temperature profiles, excluding those for the most asymmetric clusters, appear remarkably similar when plotted against radius in units of the estimated virial radius. We compare the composite temperature profile to the published hydrodynamic simulations. The observed profiles appear steeper than those in most Lagrangian simulations (Evrard etal 1996; Eke etal 1997). The predictions for Omega=1 models are most discrepant, while models with low Omega are closer to our data. We note, however, that at least one Omega=1 Lagrangian simulation (Katz & White 1993) and the recent high-resolution Eulerian simulation (Bryan & Norman 1997) produced clusters with temperature profiles similar to or steeper than those observed. Our results thus provide a new constraint for adjusting numerical simulations and, potentially, discriminating among models of cluster formation. (ABRIDGED)
We report results from the analysis of 21 nearby galaxy clusters, 11 with cooling flow (CF) and 10 without cooling flow, observed with BeppoSAX. The temperature profiles of both CF and non-CF systems are characterized by an isothermal core extending
We investigate temperature and entropy profiles of 13 nearby cooling flow clusters observed with the EPIC cameras of XMM-Newton. When normalized and scaled by the virial radius the temperature profiles turn out to be remarkably similar. At large radi
We calibrate the galaxy cluster mass - temperature relation using the temperature profiles of intracluster gas observed with ASCA (for hot clusters) and ROSAT (for cool groups). Our sample consists of apparently relaxed clusters for which the total m
We present Chandra gas temperature profiles at large radii for a sample of 13 nearby, relaxed galaxy clusters and groups, which includes A133, A262, A383, A478, A907, A1413, A1795, A1991, A2029, A2390, MKW4, RXJ1159+5531, and USGC S152. The sample co
A study of the structural and scaling properties of the temperature distribution of the hot, X-ray emitting intra-cluster medium of galaxy clusters, and its dependence on dynamical state, can give insights into the physical processes governing the fo