ﻻ يوجد ملخص باللغة العربية
We argue that the narrow line regions of Seyfert galaxies are powered by the transport of energy and momentum by the radio-emitting jets and consequently that the ratio of the radio power to jet energy flux is much smaller than is usually assumed for radio galaxies. This can be partially attributed to the smaller ages ($sim 10^6 yrs$) of Seyferts compared to radio galaxies but one also requires that either the magnetic energy density is more than an order of magnitude below the equipartition value, or more likely, that the internal energy densities of Seyfert jets are dominated by thermal plasma. If Seyfert jets are initially dominated by relativistic plasma, then an analysis of the data on jets in five Seyfert galaxies shows that all but one of these would have mildly relativistic jet velocities near 100 pc in order to power the respective narrow-line regions. However, observations of jet-cloud interactions in the NLR provide additional information on jet velocities and composition via the momentum budget. Our analysis of a jet-cloud interaction in NGC 1068, implies a shocked jet pressure much larger than the minimum pressure of the radio knot, a velocity $sim 0.06 c$ and a jet temperature $sim 10^9 K$ implying mildly relativistic electrons but thermal protons. The jet mass flux at this point $sim 0.5 M_odot yr^{-1}$, is an order of magnitude higher than the mass accretion rate into the black hole, strongly indicating entrainment. The initial jet mass flux $sim 0.02 M_odot yr^{-1}$, comparable to the mass accretion rate and is consistent with the densities inferred for accretion disc coronae from high energy observations, together with an initially mildly relativistic velocity and an initial jet radius of order 10 gravitational radii.
Narrow line Seyfert 1 galaxies (NLS1s) are believed to be powered by accretion of matter onto low mass black holes (BHs) in spiral host galaxies with BH masses M_BH of 10^6 - 10^8 M_sun . However, the broad band spectral energy distribution of the ga
We report results on multiband observations from radio to gamma-rays of the two radio-loud narrow-line Seyfert 1 (NLSy1) galaxies PKS 2004-447 and J1548+3511. Both sources show a core-jet structure on parsec scale, while they are unresolved at the ar
Narrow-Line Seyfert 1 (NLS1) class of active galactic nuclei (AGNs) is generally radio-quiet, but a small percent of them are radio-loud. The recent discovery by Fermi/LAT of high-energy gamma-ray emission from 4 NLS1s proved the existence of relativ
We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array (VLA). We find all sources show two-sided, mildly core-domin
Before the launch of the Fermi Gamma-ray Space Telescope satellite only two classes of active galactic nuclei (AGN) were known to generate relativistic jets and thus to emit up to the $gamma$-ray energy range: blazars and radio galaxies, both hosted