ترغب بنشر مسار تعليمي؟ اضغط هنا

New Measurement of Metal Abundance in the Elliptical Galaxy NGC 4636 with Asca

73   0   0.0 ( 0 )
 نشر من قبل Kyoko Matushita
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High quality X-ray spectra of NGC 4636 are obtained with ASCA. Theoretical models are found unable to reproduce the data in the Fe-L line region. Spectral data above 1.4 keV indicate that Mg to Si abundance ratio is $sim 1$ solar. Assuming that the abundance ratios among $alpha$-elements are the same with the solar ratios, spectral fit with increased systematic error in the 0.4--1.6 keV range gives abundances of $alpha$-elements and Fe to be both $sim$ 1 solar by taking one solar of Fe to be 3.24$times 10^{-5}$ by number. These new abundance results solve discrepancy between stellar and hot-gas metallicity, but still a low supernova rate is implied. We also detect strong abundance gradients for both $alpha$-elements and iron in a similar fashion. The abundance is $sim 1$ solar within $4$, and decreases outerwards down to $0.2sim 0.3$ solar at $10$ from the galaxy center. Dilution due to an extended hot gas is suggested.



قيم البحث

اقرأ أيضاً

131 - Katsuhiro Hayashi 2009
NGC 4636, an X-ray bright elliptical galaxy, was observed for 70 ks with Suzaku. The low background and good energy resolution of the XIS enable us to estimate the foreground Galactic emission accurately and hence measure, for the first time, the O, Mg, Si and Fe abundances out to a radius of ~28 arcmin ($simeq$ 140 kpc). These metal abundances are as high as $>$1 solar within the central 4 and decrease by ~50% towards the outer regions. Further, the O to Fe abundance ratio is about 0.60--1.0 solar in all regions analyzed, indicating that the products of both SNe II and SNe Ia have mixed and diffused to the outer regions of the galaxy. The O and Fe metal mass-to-light-ratios (MLR) of NGC 4636 are 2--3 times larger than those of NGC 1399 implying that metal distributions in NGC 4636 are less extended than those in NGC 1399, possibly due to environmental factors, such as frequency of galaxy interaction. We also found that the MLRs of NGC 4636 at 0.1 $r_{180}$ are $sim$5 times smaller than those of clusters of galaxies, possibly consistent with the correlation between temperature and MLR of other spherically symmetric groups of galaxies. We also confirmed a resonant scattering signature in the Fe$_{XV II}}$ line in the central region, as previously reported using the XMM-Newton RGS.
We present a spectroscopic study of the globular clusters (GCs) in the giant elliptical galaxy NGC 4636 in the Virgo cluster. We selected target GC candidates using the Washington photometry derived from the deep CCD images taken at the KPNO 4m. Then we obtained the spectra of 164 target objects in the field of NGC 4636 using the Multi-Object Spectroscopy (MOS) mode of Faint Object Camera and Spectrograph (FOCAS) on the SUBARU 8.2m Telescope. We have measured the velocities for 122 objects: 105 GCs in NGC 4636, the nucleus of NGC 4636, 11 foreground stars, 2 background galaxies, and 3 probable intracluster GCs in the Virgo cluster. The GCs in NGC 4636 are located in the projected galactocentric radius within 10arcmin (corresponding to 43 kpc). The measured velocities for the GCs range from 300km/s to 1600km/s, with a mean value of 932_{-22}^{+25} km/s, which is in good agreement with the velocity for the nucleus of NGC 4636, 928pm 45 km/s. The velocity dispersion of the GCs in NGC 4636 is derived to be 231_{-17}^{+15} km/s and the velocity dispersion of the blue GCs is slightly larger than that of the red GCs. Combining our results with data in the literature, we produce a master catalog of radial velocities for 238 GCs in NGC 4636. The velocity dispersion of the GCs in the master catalog is found to be 225_{-9}^{+12} km/s for the entire sample, 251_{-12}^{+18} km/s for 108 blue GCs, and 205_{-13}^{+11} km/s for 130 red GCs.
We present a kinematic analysis of the globular cluster(GC) system in the giant elliptical galaxy (gE) NGC 4636 in the Virgo cluster. Using the photometric and spectroscopic database of 238 GCs, we have investigated the kinematics of the GC system. T he NGC 4636 GC system shows weak overall rotation, which is dominated by the red GCs. However, both the blue GCs and red GCs show some rotation in the inner region at R<4.3. The velocity dispersion for all the GCs is derived to be sigma_p = 225{+12-9} km/s. The velocity dispersion for the blue GCs (sig=251 km/s) is slightly larger than that for the red GCs (sig=205 km/s). The velocity dispersions for the blue GCs about the mean velocity and about the best fit rotation curve have a significant variation depending on the galactocentric radius. Comparison of observed stellar and GC velocity dispersion profiles with the velocity dispersion profiles calculated from the stellar mass profile shows that the mass-to-light ratio should increase as the galactocentric distance increases, indicating the existence of an extended dark matter halo. From the comparison of the observed GC velocity dispersion profiles and the velocity dispersion profiles calculated for the X-ray mass profiles in the literature, we find that the orbit of the GC system is tangential, and that the orbit of the red GCs is slightly more tangential than that of the blue GCs. We compare the GC kinematics of NGC 4636 with those of other six gEs, finding that the kinematic properties of the GCs are diverse among gEs. We find several correlations between the kinematics of the GCs and the global parameters of their host galaxies. We discuss the implication of the results for the formation models of the GC system in gEs, and suggest a mixture scenario for the origin of the GCs in gEs.
We present new ALMA CO(2--1) observations of two well studied group-centered elliptical galaxies: NGC~4636 and NGC~5846. In addition, we include a revised analysis of Cycle 0 ALMA observations of the central galaxy in the NGC~5044 group that has been previously published. We find evidence that molecular gas, in the form of off-center orbiting clouds, is a common presence in bright group-centered galaxies (BGG). CO line widths are $gtrsim 10$ times broader than Galactic molecular clouds, and using the reference Milky Way $X_{CO}$, the total molecular mass ranges from as low as $2.6times 10^5 M_odot$ in NGC~4636 to $6.1times 10^7 M_odot$ in NGC~5044. With these parameters the virial parameters of the molecular structures is $gg 1$. Complementary observations of NGC~5846 and NGC~4636 using the ALMA Compact Array (ACA) do not exhibit any detection of a CO diffuse component at the sensitivity level achieved by current exposures. The origin of the detected molecular features is still uncertain, but these ALMA observations suggest that they are the end product of the hot gas cooling process and not the result of merger events. Some of the molecular clouds are associated with dust features as revealed by HST dust extinction maps suggesting that these clouds formed from dust-enhanced cooling. The global nonlinear condensation may be triggered via the chaotic turbulent field or buoyant uplift. The large virial parameter of the molecular structures and correlation with the warm ($10^3 - 10^5 K$)/hot ($ge10^6$) phase velocity dispersion provide evidence that they are unbound giant molecular associations drifting in the turbulent field, consistently with numerical predictions of the chaotic cold accretion process. Alternatively, the observed large CO line widths may be generated by molecular gas flowing out from cloud surfaces due to heating by the local hot gas atmosphere.
We determine the total enclosed mass profile from 0.7 to 35 kpc in the elliptical galaxy NGC 4636 based on the hot interstellar medium temperature profile measured using the Chandra X-ray Observatory, and other X-ray and optical data. The total mass increases as radius to the power 1.2 to a good approximation over this range in radii, attaining a total of 1.5 trillion solar masses (corresponding to a mass-to-light ratio of 40 solar masses per solar visual luminosity) at 35 kpc. We find that at least half, and as much as 80%, of the mass within the optical half-light radius is non-luminous, implying that NGC 4636 has an exceptionally low baryon fraction. The large inferred dark matter concentration and central dark matter density, consistent with the upper end of the range expected for standard cold dark matter halos, imply that mechanisms proposed to explain low dark matter densities in less massive galaxies (e.g., self-interacting dark matter, warm dark matter, explosive feedback) are not effective in elliptical galaxies (and presumably, by extension, in galaxy clusters). The composite (black hole, stars, and dark matter) mass distribution has a generally steep slope with no core, consistent with gravitational lensing studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا