ترغب بنشر مسار تعليمي؟ اضغط هنا

Intermittent radio galaxies and source statistics

61   0   0.0 ( 0 )
 نشر من قبل Chris Reynolds
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest that extragalactic radio sources are intermittent on timescales of 10^4-10^5 yr. Using a simple spherical model of a cocoon/shock system, it is found that inactive sources fade rapidly in radio luminosity but the shock in the ambient medium continues to expand supersonically, thereby keeping the whole source structure intact during the inactive phases. The fading of inactive sources, and the effect of the intermittency on the expansion velocity, can readily explain the observed over-abundance of small radio sources. In particular, the plateau in the observed distribution of sizes found by ODea & Baum (1997) can be interpreted as being due to intermittency. The model predicts that very young sources will be particularly radio luminous, once the effects of absorption have been accounted for. Furthermore, it predicts the existence of a significant number of faint `coasting sources. These might be detectable in deep, low-frequency radio maps, or via the X-ray and optical emission line properties of the shock front.



قيم البحث

اقرأ أيضاً

Gamma-ray bursts (GRBs) are powered by relativistic jets that exhibit intermittency over a broad range of timescales - from $ sim $ ms to seconds. Previous numerical studies have shown that hydrodynamic (i.e., unmagnetized) jets that are expelled fro m a variable engine are subject to strong mixing of jet and cocoon material, which strongly inhibits the GRB emission. In this paper we conduct 3D RMHD simulations of mildly magnetized jets with power modulation over durations of 0.1 s and 1 s, and a steady magnetic field at injection. We find that when the jet magnetization at the launching site is $sigma sim 0.1$, the initial magnetization is amplified by shocks formed in the flow to the point where it strongly suppresses baryon loading. We estimate that a significant contamination can be avoided if the magnetic energy at injection constitutes at least a few percent of the jet energy. The variability timescales of the jet after it breaks out of the star are then governed by the injection cycles rather than by the mixing process, suggesting that in practice jet injection should fluctuate on timescales as short as $ sim 10 $ ms in order to account for the observed light curves. Better stability is found for jets with shorter modulations. We conclude that for sufficiently hot jets, the Lorentz factor near the photosphere can be high enough to allow efficient photospheric emission. Our results imply that jets with $ 10^{-2} < sigma < 1 $ injected by a variable engine with $ sim 10 $ ms duty cycle are plausible sources of long GRBs.
105 - M. Jamrozy 2007
We present radio observations at frequencies ranging from 240 to 8460 MHz of the radio galaxy 4C29.30 (J0840+2949) using the Giant Metrewave Radio Telescope (GMRT), the Very Large Array (VLA) and the Effelsberg telescope. We report the existence of w eak extended emission with an angular size of $sim$520 arcsec (639 kpc) within which a compact edge-brightened double-lobed source with a size of 29 arcsec (36 kpc) is embedded. We determine the spectrum of the inner double from 240 to 8460 MHz and show that it has a single power-law spectrum with a spectral index of $sim$0.8. Its spectral age is estimated to be $lapp$33 Myr. The extended diffuse emission has a steep spectrum with a spectral index of $sim$1.3 and a break frequency $lapp$240 MHz. The spectral age is $gapp$200 Myr, suggesting that the extended diffuse emission is due to an earlier cycle of activity. We reanalyse archival x-ray data from Chandra and suggest that the x-ray emission from the hotspots consists of a mixture of nonthermal and thermal components, the latter being possibly due to gas which is shock heated by the jets from the host galaxy.
We report on radio and X-ray observations of PSR 1832+0029, a 533-ms radio pulsar discovered in the Parkes Multibeam Pulsar Survey. From radio observations taken with the Parkes, Lovell and Arecibo telescopes, we show that this pulsar exhibits two sp indown states akin to PSRs B1931+24 reported by Kramer et al. and J1841-0500 reported by Camilo et al. Unlike PSR B1931+24, which switches between on and off states on a 30--40 day time-scale, PSR 1832+0029 is similar to PSR J1841-0500 in that it spends a much longer period of time in the off-state. So far, we have fully sampled two off-states. The first one lasted between 560 and 640 days and the second one lasted between 810 and 835 days. From our radio timing observations, the ratio of on/off spindown rates is $1.77 pm 0.03$. Chandra observations carried out during both the on- and off-states of this pulsar failed to detect any emission. Our results challenge but do not rule out models involving accretion onto the neutron star from a low-mass stellar companion. In spite of the small number of intermittent pulsars currently known, difficulties in discovering them and in quantifying their behavior imply that their total population could be substantial.
295 - O.V.Verkhodanov 2001
The steep spectrum of IRAS F02044+0957 was obtained with the RATAN-600 radio telescope at four frequencies. Optical spectroscopy of the system components, was carried out with the 2.1m telescope of the Guillermo Haro Observatory. Observational data a llow us to conclude that this object is a pair of interacting galaxies, a LINER and a HII galaxy, at $z=0.093$.
In this paper, the second in a series investigating FR II radio galaxies at low frequencies, we use LOFAR and VLA observations between 117 and 456 MHz in addition to archival data to determine the dynamics and energetics of two radio galaxies, 3C452 and 3C223, through fitting of spectral ageing models on small spatial scales. We provide improved measurements for the physical extent of the two sources, including a previously unknown low surface brightness extension to the northern lobe of 3C223, and revised energetics based on these values. We find spectral ages of $77.05^{+9.22}_{-8.74}$ and $84.96^{+15.02}_{-13.83}$ Myr for 3C452 and 3C223 respectively suggesting a characteristic advance speed for the lobes of around one per cent the speed of light. For 3C452 we show that, even for a magnetic field strength not assumed to be in equipartition, a disparity of factor of approximately 2 exists between the spectral age and that determined from a dynamical standpoint. We confirm that the injection index of both sources (as derived from the lobe emission) remains steeper than classically assumed values even when considered on well resolved scales at low frequencies, but find an unexpected sharp discontinuity between the spectrum of the hotspots and the surrounding lobe emission. We suggest that this discrepancy is due to the absorption of hotspot emission and/or non-homogeneous and additional acceleration mechanisms and, as such, hotspots should not be used in the determination of the underlying initial electron energy distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا