ﻻ يوجد ملخص باللغة العربية
A summary is given of an analysis of the Hipparcos trigonometrical parallaxes and proper motions of classical Cepheids. It is possible for the first time to derive zero-points for the period-luminosity and period-luminosity-colour relations from parallaxes alone, avoiding the problems of less direct methods. The results imply an increase of 8 to 10 percent in the extragalactic distance scale based on Cepheids. The proper motions are used to derive the constants of galactic rotation. Comparison with radial velocity data leads to a confirmation of the Cepheid distance scale derived from the parallaxes and indicates a kinematic distance to the galactic centre of 8.5 +/- 0.5 kpc. From the new Cepheid distances to the LMC and M31, the absolute magnitude of RR Lyrae variables in metal-poor globular clusters is derived. Applying this to data on metal-poor clusters in our own Galaxy leads to an age of about 11 Gyr for these clusters, considerably less than previously thought. Other evidence from Hipparcos on these matters is briefly reviewed and it is suggested that the Cepheid results currently provide the most reliable scale on which to base distances and ages.
The near future of astrophysics involves many large solid-angle, multi-epoch, multi-band imaging surveys. These surveys will, at their faint limits, have data on large numbers of sources that are too faint to be detected at any individual epoch. Here
We present a pilot study of Galactic globular cluster (GC) proper motion (PM) determinations using Gaia data. We search for GC stars in the Tycho-Gaia Astrometric Solution (TGAS) catalogue from Gaia Data Release 1 (DR1), and identify five members of
Gaia Data Release 1 (Gaia DR1) contains astrometric results for more than 1 billion stars brighter than magnitude 20.7 based on observations collected by the Gaia satellite during the first 14 months of its operational phase. We give a brief overview
CONTEXT.The first Gaia Data Release (DR1) significantly improved the previously available proper motions for the majority of the Tycho-2 stars. AIMS. We want to detect runaway stars using Gaia DR1 proper motions and compare our results with previous
Astrometry can bring powerful constraints to bear on a variety of scientific questions about neutron stars, including their origins, astrophysics, evolution, and environments. Using phase-referenced observations at the VLBA, in conjunction with pulsa