ﻻ يوجد ملخص باللغة العربية
We investigate techniques that can be used to determine ages of starburst regions containing populations beyond their early nebular phase. In particular, we study the strength of the CaII triplet (lambda 8498, 8542, 8662 Ang) and the CO index (2.31-2.40 micron band) using synthetic models as the starburst evolves. For an instantaneous burst of star formation both of these absorption features remain strongest between 7-14 Myr corresponding to the red supergiant population. The detailed evolutionary behavior of the starburst is strongly metallicity dependent. Low metallicity starburst models successfully reproduce the distribution of equivalent widths of CaII triplet with age in Large Magellanic Cloud clusters. The clusters in the red supergiant phase strongly favor the stellar evolutionary models incorporating mass-loss rates higher than the standard values. We suggest usage of diagrams involving CaII triplet equivalent width, CO index and nebular recombination lines to infer the history as well as age of starburst regions.
We investigate the uncertainties in the synthetic integrated colors of simple stellar populations. Three types of uncertainties are from the stellar models, the population synthesis techniques, and from the spectral libraries. Despite some skepticism
We present H-band interferometric observations of the red supergiant (RSG) AZ Cyg made with the Michigan Infra-Red Combiner (MIRC) at the six-telescope Center for High Angular Resolution Astronomy (CHARA) Array. The observations span 5 years (2011-20
We review the main stellar features observed in starburst spectra from the UV to the near-IR and their use as fundamental tools to determine the properties of stellar populations from integrated spectra. The origin and dependence of the features on
We present near-IR spectroscopy of red supergiant (RSG) stars in NGC 6822, obtained with the new VLT-KMOS instrument. From comparisons with model spectra in the J-band we determine the metallicity of 11 RSGs, finding a mean value of [Z] = -0.52 $pm$
A significant percentage of OB stars are runaways, so we should expect a similar percentage of their evolved descendants to also be runaways. However, recognizing such stars presents its own set of challenges, as these older, more evolved stars will