ﻻ يوجد ملخص باللغة العربية
We present the analysis of the X-ray data of the young active star HD35850 obtained with ASCA and ROSAT. Our main goal was to see if there is a difference in the elemental abundances of active stars between young and more evolved objects. A two temperature plasma with subsolar abundances, of the order of Z = 0.15 - 0.3, is required to fit the SIS spectra. Similar results are obtained from a ROSAT PSPC observation. Metal abundances of 0.2 - 0.4 the solar value are required to fit both the ASCA and ROSAT data together. From a simultaneous SIS0+SIS1 spectral fit, with 2T plasma models and abundances free to vary in non-solar proportions, we find that, besides N, O and Ne for which we find very low values, all other elements have values relative to solar abundances around 0.2-0.3. These subsolar abundances are in line with those typically observed in more evolved, active stars like RS CVn and Algol-type binaries. The two temperature values required to fit the ASCA SIS spectra are about 0.5 and 1.0 keV. These temperatures, especially the higher one, are lower with respect to the values found for the RS CVn and Algol binaries or for the young star AB Dor, but higher than other single G/K stars. All our data show that this single, late F-type star is actually a very active source, indirectly confirming that this fast rotating star is probably a young object. In the simultaneous fit of the ASCA+ROSAT data, a third temperature is required. However this is not just an addition of a softer component, but is more a redistribution of the dominant temperatures. Indeed, the range spanned by the three temperatures, from 5 to 15 million degrees, is not very large.
We present ASCA SIS observations of the wind-blown bubble NGC6888. Owing to the higher sensitivity of the SIS for higher energy photons compared to the ROSAT PSPC, we are able to detect a T ~ 8x10^6 K plasma component in addition to the T ~ 1.3x10^6
We have detected pulsed X-ray emission from the fastest millisecond pulsar known, PSR B1937+21 (P=1.558 msec), with ASCA. The pulsar is detected as a point source above $sim 1.7$ keV, with no indication of nebulosity. The source flux in the 2--10 keV
The X-ray emission from the central region of the Galactic plane, |l|<45 deg and |b|<0.4 deg, was studied in the 0.7-10 keV energy band with a spatial resolution of ~3 with the ASCA observatory. We developed a new analysis method for the ASCA data to
shortened) Results obtained from 9 X-ray observations of 3C 273 performed by ASCA are presented (for a total exposure time of about 160 000 s). The analysis and interpretation of the results is complicated by the fact that 4 of these observations wer
We report the results from an ASCA X-ray observation of the powerful Broad Line Radio Galaxy, 3C109. The ASCA spectra confirm our earlier ROSAT detection of intrinsic X-ray absorption associated with the source. The absorbing material obscures a cent