ترغب بنشر مسار تعليمي؟ اضغط هنا

Listening To Cluster Cooling Flows: Radio Emission and the Cluster Environment

187   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jack O. Burns




اسأل ChatGPT حول البحث

The radio continuum properties of galaxy clusters with cooling flows are reviewed along with the relationship to the X-ray environment. We find that 60-70% of cD galaxies in cooling flows are radio-loud, a much higher fraction than the 14% found for typical cluster ellipticals. New ROSAT HRI observations reveal a variety of interesting correlations and anticorrelations between the X-ray structure within the inner cooling flows and the radio morphologies. It appears that the radio plasma can have a strong effect on the inner structure of cluster cooling cores as virtually all cooling flow clusters with central radio sources have non-symmetric X-ray structure. Numerical simulations of radio jets in cooling flow atmospheres are presented. We also discuss the prospects for destroying cooling flows via cluster-cluster mergers, using new hydro/N-body simulations which incorporate radiative cooling.



قيم البحث

اقرأ أيضاً

249 - B. Vollmer 2010
The influence of the environment on the polarized and total power radio continuum emission of cluster spiral galaxies is investigated. We present deep scaled array VLA 20 and 6 cm observations including polarization of 8 Virgo spiral galaxies. These data are combined with existing optical, HI, and Halpha data. Ram pressure compression leads to sharp edges of the total power distribution at one side of the galactic disk. These edges coincide with HI edges. In edge-on galaxies the extraplanar radio emission can extend further than the HI emission. In the same galaxies asymmetric gradients in the degree of polarization give additional information on the ram pressure wind direction. The local total power emission is not sensitive to the effects of ram pressure. The radio continuum spectrum might flatten in the compressed region only for very strong ram pressure. This implies that neither the local star formation rate nor the turbulent small-scale magnetic field are significantly affected by ram pressure. Ram pressure compression occurs mainly on large scales (>=1 kpc) and is primarily detectable in polarized radio continuum emission.
The observed cooling rate of hot gas in clusters is much lower than that inferred from the gas density profiles. This suggests that the gas is being heated by some source. We use an adaptive-mesh refinement code (FLASH) to simulate the effect of mult iple, randomly positioned, injections of thermal energy within 50 kpc of the centre of an initially isothermal cluster with mass M_200=3x10^(14) Msol and kT=3.1 keV. We have performed eight simulations with spherical bubbles of energy generated every 10^8 years, over a total of 1.5 Gyr. Each bubble is created by injecting thermal energy steadily for 10^7 years; the total energy of each bubble ranges from 0.1--3x10^(60) erg, depending on the simulation. We find that 2x10^(60) erg per bubble (corresponding to a average power of 6.3x10^(44) erg/s) effectively balances energy loss in the cluster and prevents the accumulation of gas below kT=1 keV from exceeding the observational limits of 30 Msol/yr. This injection rate is comparable to the radiated luminosity of the cluster, and the required energy and periodic timescale of events are consistent with observations of bubbles produced by central AGN in clusters. The effectiveness of this process depends primarily on the total amount of injected energy and the initial location of the bubbles, but is relatively insensitive to the exact duty cycle of events.
117 - S.I. Loubser 2014
We present detailed, high spatial and spectral resolution, long-slit observations of four central cluster galaxies (Abell 0085, 0133, 0644 and Ophiuchus) recently obtained on the Southern African Large Telescope (SALT). Our sample consists of central cluster galaxies (CCGs) with previously-observed Halpha-filaments, and have existing data from the X-ray to radio wavelength regimes available. Here, we present the detailed optical data over a broad wavelength range to probe the spatially-resolved kinematics and stellar populations of the stars. We use the Pegase.HR model with the ELODIE v3.1 stellar library to determine the star formation histories of the galaxies using full spectrum fitting. We perform single stellar population (SSP) as well as composite stellar population (CSP) fits to account for more complex star formation histories. Monte-Carlo simulations and chi 2-maps are used to check the reliability of the solutions. This, combined with the other multiwavelength data, will form a complete view of the different phases (hot and cold gas and stars) and how they interact in the processes of star formation and feedback detected in central galaxies in cooling flow clusters, as well as the influence of the host cluster. We find small, young stellar components in at least three of the four galaxies, even though two of the three host clusters have zero spectrally-derived mass deposition rates from X-ray observations.
206 - Eric A. Lufkin 2000
We analyze two time-dependent cluster cooling flow models in spherical symmetry. The first assumes that the intracluster gas resides in a static external potential, and includes the effects of optically thin radiative cooling and mass deposition. Thi s corresponds to previous steady-state cooling flow models calculated by White & Sarazin (1987). Detailed agreement is found between steady-state models and time-dependent models at fixed times in the simulations. The mass accretion rate is found either to increase or remain nearly constant once flows reach a steady state. The time rate of change of the accretion rate is strongly sensitive to the value of the mass deposition parameter q, but only mildly sensitive to the ratio beta of gravitational binding energy to gas temperature. We show that previous scaling arguments presented by Bertschinger (1988) and White (1988) are valid only for mature cooling flows with weak mass deposition (q ~< 1). The second set of models includes the effects of a secularly deepening cluster potential and secondary infall of gas from the Hubble flow. We find that such heating effects do not prevent the flows from reaching a steady state within an initial central cooling time.
105 - R. Samuele 2011
We present equivalent widths of the [OII] and Ha nebular emission lines for 77 brightest cluster galaxies (BCGs) selected from the 160 Square Degree $ROSAT$ X-ray survey. We find no [OII] or Ha emission stronger than -15 angstroms or -5 angstroms, re spectively, in any BCG. The corresponding emission line luminosities lie below 6E40 erg/s, which is a factor of 30 below that of NGC1275 in the Perseus cluster. A comparison to the detection frequency of nebular emission in BCGs lying at redshifts above z = 0.35 drawn from the Brightest Cluster Survey (Crawford et al. 1999) indicates that we should have detected roughly one dozen emission-line galaxies, assuming the two surveys are selecting similar clusters in the X-ray luminosity range 10E42 erg/s to 10E45 erg/s. The absence of luminous nebular emission (ie., Perseus-like systems) in our sample is consistent with an increase in the number density of {it strong} cooling flow (cooling core) clusters between $rm z=0.5$ and today. The decline in their numbers at higher redshift could be due to cluster mergers and AGN heating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا