ﻻ يوجد ملخص باللغة العربية
In this paper, we focus our attention on the following question: How well can we recover the power spectrum of the cosmic microwave background from the maps of a given experiment?. Each experiment is described by a a pixelization scale, a beam size, a noise level and a sky coverage. We use accurate numerical simulations of the microwave sky and a cold dark matter model for structure formation in the universe. Angular scales smaller than those of previous simulations are included. The spectrum obtained from the simulated maps is appropriately compared with the theoretical one. Relative deviations between these spectra are estimated. Various contributions to these deviations are analyzed. The method used for spectra comparisons is discussed.
Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier-
We cross-correlate the Saskatoon Ka and Q-Band Cosmic Microwave Background (CMB) data with different maps to quantify possible foreground contamination. We detect a marginal correlation (2 sigma) with the Diffuse Infrared Background Experiment (DIRBE
Recent observations of the cosmic microwave background (CMB) have extended the measured power spectrum to higher multipoles $lgtrsim$1000, and there appears to be possible evidence for excess power on small angular scales. The primordial magnetic fie
We present results from a four frequency observation of a 6 x 0.6 degree strip of the sky centered near the star Gamma Ursae Minoris during the fourth flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observation was made with a 1.4 degr
Archeops is a balloon-borne experiment designed to measure the temperature fluctuations of the CMB on a large region of the sky ($simeq 30%$) with a high angular resolution (10 arcminutes) and a high sensitivity ($60mu K$ per pixel). Archeops will pe