ﻻ يوجد ملخص باللغة العربية
From the poor cluster catalog of White et al. (1996), we define a sample of 71 optically-selected poor galaxy clusters. The surface-density enhance- ment we require for our clusters falls between that of the loose associations of Turner and Gott (1976) and the Hickson compact groups (Hickson, 1982). We review the selection biases and determine the statistical comleteness of the sample. For this sample, we report new velocity measurements made with the ARC 3.5-m Dual-Imaging spectrograph and the 2.3-m Steward Observatory MX fiber spectrograph. Combining our own measurements with those from the literature, we examine the velocity distributions, velocity dispersions, and 1-d velocity substructure for our poor cluster sample, and compare our results to other poor cluster samples. We find that approximately half of the sample may have significant 1-d velocity substructure. The optical morphology, large-scale environment, and velocity field of many of these clusters is indicative of young, dynamically evolving systems. In future papers, we will use this sample to derive the poor cluster X-ray luminosity function and gas mass function (see astro-ph/9606120), and will examine the optical/X-ray properties of the clusters in more detail.
Non-thermal properties of galaxy clusters have been studied with detailed and deep radio images in comparison with X-ray data. While much progress has been made, most of the studied clusters are at a relatively low redshift (z < 0.3). We here investi
We investigate the thermodynamic and chemical structure of the intracluster medium (ICM) across a statistical sample of 20 galaxy clusters analysed with the Chandra X-ray satellite. In particular, we focus on the scaling properties of the gas density
We present an analysis of 20 galaxy clusters observed with the Chandra X-ray satellite, focussing on the temperature structure of the intracluster medium and the cooling time of the gas. Our sample is drawn from a flux-limited catalogue but excludes
The growth of structure in the Universe is tightly correlated with the cosmological parameters. Galaxy clusters as tracers of the large scale structure are the ideal objects to witness this evolution. The X-ray bright, hot gas in the potential well o
The X-ray regime, where the most massive visible component of galaxy clusters, the intra cluster medium (ICM), is visible, offers directly measured quantities, like the luminosity, and derived quantities, like the total mass, to characterize these ob