ﻻ يوجد ملخص باللغة العربية
We study star-formation-inducing mechanisms in galaxies through multi- wavelength measurements of a sample of dwarf galaxies in the Virgo cluster described in paper I. Our main goal is to test how star formation inducing mechanisms depend on several parameters of the galaxies, such as morphological type and hydrogen content. We derive the star formation rate and star formation histories of the galaxies, and check their dependence on other parameters. Comparison of the sample galaxies with population synthesis models shows that these objects have significantly lower metallicity than the Solar value. The colors can generally be explained as a combination of two different stellar populations: a young (3--20 Myr) population which represents the stars currently forming, and an older (0.1--1 Gyr) population of previous stellar generations. This is consistent with the explanation that star formation in this type of objects takes place in short bursts followed by long quiescent periods. No significant relation is found between the star formation properties of the sample galaxies and their hydrogen content. Apparently, when star formation occurs in bursts, other parameters influence the star formation properties more significantly than the amount of hydrogen. No correlation is found between the projected Virgocentric distance and the rate of star formation in the galaxies.
We selected samples of late-type dwarf galaxies in the Virgo cluster with HI information. The galaxies were observed at the Wise-Observatory using several broad-band and H$alpha$ bandpasses. UV measurements were carried out with the IUE Observatory f
We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K - velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling relations for massive early-type galaxies (Es). We use a generalized velocity dispersion, which includ
We use dust scaling relations to investigate the hypothesis that Virgo cluster transition-type dwarfs are infalling star-forming field galaxies, which is argued based on their optical features (e.g. disks, spiral arms, bars) and kinematic properties
We develop a four-phase galaxy evolution model in order to study the effect of accretion of extra-galactic gas on the star formation rate (SFR) of a galaxy. Pure self-regulated star formation of isolated galaxies is replaced by an accretion-regulated
The combination of huge databases of galaxy spectra and advances in evolutionary synthesis models in the past few years has renewed interest in an old question: How to estimate the star formation history of a galaxy out of its integrated spectrum? Fr