ﻻ يوجد ملخص باللغة العربية
New observations with the IRAM interferometer of CO(3--2) from the highly luminous galaxy IRAS F10214+4724 show the source is 1.5 x <= 0.9 ; they display no evidence of any velocity gradient. This size, together with optical and IR data that show the galaxy is probably gravitationally lensed, lead to a new model for the CO distribution. In contrast to many lensed objects, we have a good estimate of the intrinsic CO and far IR surface brightnesses, so we can derive the CO and far IR/sub-mm magnifications. The CO is magnified 10 times and has a true radius of 400 pc. and the far IR is magnified 13 times and has a radius of 250 pc. The true far IR luminosity is 4 to 7e12 Lsun and the molecular gas mass is 2e10 Msun . This is nearly an order of magnitude less than previously estimated. Because the far IR magnification is lower than the mid and near IR magnification, the intrinsic spectral energy distribution now peaks in the far infrared. That is, nearly all of the energy of this object is absorbed and re-emitted in the far infrared. In CO luminosity, molecular gas content, CO linewidth, and corrected far IR luminosity, 10214+472 is a typical, warm, IR ultraluminous galaxy.
The z=2.286 IRAS galaxy F10214+4724 remains one of the most luminous galaxies in the Universe, despite its gravitational lens magnification. We present optical and near-infrared spectra of F10214+4724, with clear evidence for three distinct component
Using the IRAM 30m telescope and the Plateau de Bure interferometer we have detected the ctwo and the CO 3$-$2, 4$-$3, 6$-$5, 7$-$6 transitions as well as the dust continuum at 3 and 1.2 mm towards the distant luminous infrared galaxy IRAS F10214+472
Sensitive new observations of the fine structure line $^3$P$_2$$to $ $^3$P$_1$ (J=2--1) of the neutral atomic carbon CI ($ u_{rest}sim 809$ GHz) in the strongly lensed Ultra Luminous Infrared Galaxy (ULIRG) IRAS F10214+4724 at z=2.3 with the mm/sub-m
We report 1.7 GHz Very Long Baseline Interferometry (VLBI) observations of IRAS F10214+4724, a lensed z=2.3 obscured quasar with prodigious star formation. We detect what we argue to be the obscured active nucleus with an effective angular resolution
We present JVLA observations of the cold (CO (1-0)) molecular gas in IRAS F10214+4724, a lensed ULIRG at z=2.3 with an obscured active nucleus. The galaxy is spatially and spectrally well-resolved in the CO (1-0) emission line. A CO (1-0) counter-ima