ﻻ يوجد ملخص باللغة العربية
A gravitational lens (GL)-search program, initiated in 1990 at the Nordic Optical Telescope (NOT), has revealed several possible GL-candidates among a sample of 168 quasars (QSOs), chosen from three lists compiled by C. Hazard, D. Reimers and J. Surdej, respectively. Some of these candidates, selected for having close companions (within 5 arcseconds), were imaged in several filters and their colours compared. Low dispersion spectra of the most promising candidates were also obtained at the NOT and ESO New Technology Telescope (NTT). None of these has proved to be strong candidates of gravitational lensing effects. We present this new sample of QSOs and combine it with previously published optical QSO samples in a statistical analysis to yield constraints on flat cosmologies and galaxy velocity dispersions. Finally, by simulating larger samples of quasars and gravitational lenses, we discuss how the uncertainties affecting our present results would be changed.
We compute the expected number of quasars multiply imaged by cluster size dark halos for current wide field quasar surveys by carrying out a large ensemble of ray tracing simulations through clusters from a cosmological N-body simulation of the LCDM
Previous Very Long Baseline Interferometry (VLBI) observations of the quasar B1152+199 at 5GHz has revealed two images of a strongly lensed jet with seemingly discordant morphologies. Whereas the jet appears straight in one of the images, the other e
We report the discovery of an intrinsically faint, quintuply-imaged, dusty galaxy MACS0600-z6 at a redshift $z=$6.07 viewed through the cluster MACSJ0600.1-2008 ($z$=0.46). A $simeq4sigma$ dust detection is seen at 1.2mm as part of the ALMA Lensing C
We present evidence for a Spitzer-selected luminous infrared galaxy (LIRG) behind the Bullet Cluster. The galaxy, originally identified in IRAC photometry as a multiply imaged source, has a spectral energy distribution consistent with a highly extinc
We report the discovery of a multiply-imaged gravitationally lensed Type Ia supernova, iPTF16geu (SN 2016geu), at redshift $z=0.409$. This phenomenon could be identified because the light from the stellar explosion was magnified more than fifty times