ﻻ يوجد ملخص باللغة العربية
There is growing consensus that feedback from AGN is the main mechanism responsible for stopping cooling flows in clusters of galaxies. AGN are known to inflate buoyant bubbles that supply mechanical power to the intracluster gas (ICM). High Reynolds number hydrodynamical simulations show that such bubbles get entirely disrupted within 100 Myr, as they rise in cluster atmospheres, which is contrary to observations. This artificial mixing has consequences for models trying to quantify the amount of heating and star formation in cool core clusters of galaxies. It has been suggested that magnetic fields can stabilize bubbles against disruption. We perform MHD simulations of fossil bubbles in the presence of tangled magnetic fields using the high order PENCIL code. We focus on the physically-motivated case where thermal pressure dominates over magnetic pressure and consider randomly oriented fields with and without maximum helicity and a case where large scale external fields drape the bubble.We find that helicity has some stabilizing effect. However, unless the coherence length of magnetic fields exceeds the bubble size, the bubbles are quickly shredded. As observations of Hydra A suggest that lengthscale of magnetic fields may be smaller then typical bubble size, this may suggest that other mechanisms, such as viscosity, may be responsible for stabilizing the bubbles. However, since Faraday rotation observations of radio lobes do not constrain large scale ICM fields well if they are aligned with the bubble surface, the draping case may be a viable alternative solution to the problem. A generic feature found in our simulations is the formation of magnetic wakes where fields are ordered and amplified. We suggest that this effect could prevent evaporation by thermal conduction of cold Halpha filaments observed in the Perseus cluster.
We investigate the dynamical evolution of magnetic fields in closed regions of solar and stellar coronae. To understand under which conditions current sheets form, we examine dissipative and ideal reduced magnetohydrodynamic models in cartesian geome
The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. We wish to inv
Cold ($Tsim 10^{4} mathrm{K}$) gas is very commonly found in both galactic and cluster halos. There is no clear consensus on its origin. Such gas could be uplifted from the central galaxy by galactic or AGN winds. Alternatively, it could form in sit
We present ASCA SIS observations of the wind-blown bubble NGC6888. Owing to the higher sensitivity of the SIS for higher energy photons compared to the ROSAT PSPC, we are able to detect a T ~ 8x10^6 K plasma component in addition to the T ~ 1.3x10^6
Blowouts can occur when a dense shell confining hot, high pressure, gas ruptures. The venting gas inflates a blister on the surface of the shell. Here we examine the growth of such blisters on the surfaces of wind-blown-bubbles (WBBs) and supernova r