ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the ISM Near Star Forming Regions with GRB Afterglow Spectroscopy: Gas, Metals, and Dust

245   0   0.0 ( 0 )
 نشر من قبل Jason X. Prochaska
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the chemical abundances of the interstellar medium surrounding high z gamma-ray bursts (GRBs) through analysis of the damped Lya systems (DLAs) identified in afterglow spectra. These GRB-DLAs are characterized by large HI column densities N(HI) and metallicities [M/H] spanning 1/100 to nearly solar, with median [M/H]>-1. The majority of GRB-DLAs have [M/H] values exceeding the cosmic mean metallicity of atomic gas at z>2, i.e. if anything, the GRB-DLAs are biased to larger metallicity. We also observe (i) large [Zn/Fe] values (>+0.6) and sub-solar Ti/Fe ratios which imply substantial differential depletion, (ii) large a/Fe ratios suggesting nucleosynthetic enrichment by massive stars, and (iii) low C^0/C^+ ratios (<10^{-4}). Quantitatively, the observed depletion levels and C^0/C^+ ratios of the gas are not characteristic of cold, dense HI clouds in the Galactic ISM. We argue that the GRB-DLAs represent the ISM near the GRB but not gas directly local to the GRB (e.g. its molecular cloud or circumstellar material). We compare these observations with DLAs intervening background quasars (QSO-DLAs). The GRB-DLAs exhibit larger N(HI) values, higher a/Fe and Zn/Fe ratios, and have higher metallicity than the QSO-DLAs. We argue that the differences primarily result from galactocentric radius-dependent differences in the ISM: GRB-DLAs preferentially probe denser, more depleted, higher metallicity gaslocated in the inner few kpc whereas QSO-DLAs are more likely to intersect the less dense, less enriched, outer regions of the galaxy. Finally, we investigate whether dust obscuration may exclude GRB-DLA sightlines from QSO-DLA samples; we find that the majority of GRB-DLAs would be recovered which implies little observational bias against large N(HI) systems.



قيم البحث

اقرأ أيضاً

145 - Tayyaba Zafar 2011
GRB afterglows are well suited to extinction studies due to their brightness, simple power-law spectra and the occurrence of GRBs in distant star forming galaxies. In this paper we present results from the SED analysis of a sample of 41 GRB afterglow s, from X-ray to NIR wavelengths. This is the largest sample of extinction curves outside the Local Group and, to date, the only extragalactic sample of absolute extinction curves based on spectroscopy. Visual extinction correlation with HI column density as well as total and gas-phase metal column density are examined. Approximately half the sample require a cooling break between the optical and X-ray regimes. The broken power-law SEDs show an average change in the spectral index of delta_beta=0.51 with a standard deviation of 0.02. This is consistent with the expectation from a simple synchrotron model. Of the sample, 63% are well described by the SMC-type extinction curve and have moderate or low extinction, with AV<0.65. Almost a quarter of our sample is consistent with no significant extinction (typically AV<0.1). The 2175AA extinction bump is detected unequivocally in 7% of our sample (3 GRBs), which all have A_V>1.0. We find an anti-correlation between gas-to-dust ratio and metallicity consistent with the Local Group relation. Our metals-to-dust ratios derived from the soft X-ray absorption are always larger (3-30 times) than the Local Group value, which may mean that GRB hosts may be less efficient at turning their metals into dust. However, we find that gas, dust, and metal column densities are all likely to be influenced by photo-ionization and dust destruction effects from the GRB. [abridged]
We conducted sub-millimeter observations with the Atacama Large Millimeter/sub-millimeter Array (ALMA) of star-forming galaxies at $zsim3.3$, whose gas-phase metallicities have been previously measured. We investigate the dust and gas contents of the galaxies at $zsim3.3$ and study how galaxies are interacting with their circumgalactic/intergalactic medium at this epoch by probing their gas mass fractions and gas-phase metallicities. Single-band dust continuum emission tracing dust mass and the relation between the gas-phase metallicity and gas-to-dust mass ratio are used to estimate the gas masses. The estimated gas mass fractions and depletion timescales are $f_{rm gas}=$ 0.20-0.75 and $t_{rm dep}=$ 0.09-1.55 Gyr, respectively. Although the galaxies appear to tightly distribute around the star-forming main sequence at $zsim3.3$, both quantities show a wider spread at a fixed stellar mass than expected from the scaling relation, suggesting a large diversity of fundamental gas properties among star-forming galaxies apparently on the main sequence. Comparing gas mass fraction and gas-phase metallicity between the star-forming galaxies at $zsim3.3$ and at lower redshifts, star-forming galaxies at $zsim3.3$ appear to be more metal-poor than local galaxies with similar gas mass fractions. Using the gas regulator model to interpret this offset, we find that it can be explained by a higher mass-loading factor, suggesting that the mass-loading factor in outflows increases at earlier cosmic times.
117 - R.L.C. Starling 2005
We present early WHT ISIS optical spectroscopy of the afterglow of gamma-ray burst GRB 050730. The spectrum shows a DLA system with the highest measured hydrogen column to date: N(HI) = 22.1 +/- 0.1 at the third-highest GRB redshift z = 3.968. Our an alysis of the Swift XRT X-ray observations of the early afterglow show X-ray flares accompanied by decreasing X-ray absorption. From both the optical and the X-ray spectra we constrain the dust and gas properties of the host galaxy. We find the host to be a low metallicity galaxy, with low dust content. Much of the X-ray absorbing gas is situated close to the GRB, whilst the HI absorption causing the DLA is most likely located further out.
We review current research related to spectroscopy of gamma-ray burst (GRB) afterglows with particular emphasis on the interstellar medium (ISM) of the galaxies hosting these high redshift events. These studies reveal the physical conditions of star- forming galaxies and yield clues to the nature of the GRB progenitor. We offer a pedagogical review of the experimental design and review current results. The majority of sightlines are characterized by large HI column densities, negligible molecular fraction, the ubiquitous detection of UV pumped fine-structure transitions, and metallicities ranging from 1/100 to nearly solar abundance.
We study the relationship between stellar mass, star formation rate (SFR),ionization state, and gas-phase metallicity for a sample of 41 normal star-forming galaxies at $3 lesssim z lesssim 3.7$. The gas-phase oxygen abundance, ionization parameter, and electron density of ionized gas are derived from rest-frame optical strong emission lines measured on near-infrared spectra obtained with Keck/MOSFIRE. We remove the effect of these strong emission lines in the broad-band fluxes to compute stellar masses via spectral energy distribution fitting, while the SFR is derived from the dust-corrected ultraviolet luminosity. The ionization parameter is weakly correlated with the specific SFR, but otherwise the ionization parameter and electron density do not correlate with other global galaxy properties such as stellar mass, SFR, and metallicity. The mass-metallicity relation (MZR) at $zsimeq3.3$ shows lower metallicity by $simeq 0.7$ dex than that at $z=0$ at the same stellar mass. Our sample shows an offset by $simeq 0.3$ dex from the locally defined mass-metallicity-SFR relation, indicating that simply extrapolating such relation to higher redshift may predict an incorrect evolution of MZR. Furthermore, within the uncertainties we find no SFR-metallicity correlation, suggesting a less important role of SFR in controlling the metallicity at high redshift. We finally investigate the redshift evolution of the MZR by using the model by Lilly et al. (2013), finding that the observed evolution from $z=0$ to $zsimeq3.3$ can be accounted for by the model assuming a weak redshift evolution of the star formation efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا