ﻻ يوجد ملخص باللغة العربية
We study the chemical abundances of the interstellar medium surrounding high z gamma-ray bursts (GRBs) through analysis of the damped Lya systems (DLAs) identified in afterglow spectra. These GRB-DLAs are characterized by large HI column densities N(HI) and metallicities [M/H] spanning 1/100 to nearly solar, with median [M/H]>-1. The majority of GRB-DLAs have [M/H] values exceeding the cosmic mean metallicity of atomic gas at z>2, i.e. if anything, the GRB-DLAs are biased to larger metallicity. We also observe (i) large [Zn/Fe] values (>+0.6) and sub-solar Ti/Fe ratios which imply substantial differential depletion, (ii) large a/Fe ratios suggesting nucleosynthetic enrichment by massive stars, and (iii) low C^0/C^+ ratios (<10^{-4}). Quantitatively, the observed depletion levels and C^0/C^+ ratios of the gas are not characteristic of cold, dense HI clouds in the Galactic ISM. We argue that the GRB-DLAs represent the ISM near the GRB but not gas directly local to the GRB (e.g. its molecular cloud or circumstellar material). We compare these observations with DLAs intervening background quasars (QSO-DLAs). The GRB-DLAs exhibit larger N(HI) values, higher a/Fe and Zn/Fe ratios, and have higher metallicity than the QSO-DLAs. We argue that the differences primarily result from galactocentric radius-dependent differences in the ISM: GRB-DLAs preferentially probe denser, more depleted, higher metallicity gaslocated in the inner few kpc whereas QSO-DLAs are more likely to intersect the less dense, less enriched, outer regions of the galaxy. Finally, we investigate whether dust obscuration may exclude GRB-DLA sightlines from QSO-DLA samples; we find that the majority of GRB-DLAs would be recovered which implies little observational bias against large N(HI) systems.
GRB afterglows are well suited to extinction studies due to their brightness, simple power-law spectra and the occurrence of GRBs in distant star forming galaxies. In this paper we present results from the SED analysis of a sample of 41 GRB afterglow
We conducted sub-millimeter observations with the Atacama Large Millimeter/sub-millimeter Array (ALMA) of star-forming galaxies at $zsim3.3$, whose gas-phase metallicities have been previously measured. We investigate the dust and gas contents of the
We present early WHT ISIS optical spectroscopy of the afterglow of gamma-ray burst GRB 050730. The spectrum shows a DLA system with the highest measured hydrogen column to date: N(HI) = 22.1 +/- 0.1 at the third-highest GRB redshift z = 3.968. Our an
We review current research related to spectroscopy of gamma-ray burst (GRB) afterglows with particular emphasis on the interstellar medium (ISM) of the galaxies hosting these high redshift events. These studies reveal the physical conditions of star-
We study the relationship between stellar mass, star formation rate (SFR),ionization state, and gas-phase metallicity for a sample of 41 normal star-forming galaxies at $3 lesssim z lesssim 3.7$. The gas-phase oxygen abundance, ionization parameter,