ترغب بنشر مسار تعليمي؟ اضغط هنا

The spatially resolved stellar populations of isolated early-type galaxies

59   0   0.0 ( 0 )
 نشر من قبل Fatma Reda Mohamed
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fatma M. Reda




اسأل ChatGPT حول البحث

We present radial stellar population parameters for a subsample of 12 galaxies from the 36 isolated early-type galaxies of Reda et al. Using new long-slit spectra, central values and radial gradients for the stellar age, metallicity [Z/H] and alpha-element abundance [E/Fe] are measured. Similarly, the central stellar population parameters are derived for a further 5 isolated early-type galaxies using their Lick indices from the literature. On average, the seventeen isolated galaxies have mean central [Z/H]o and [E/Fe]o of 0.29+/-0.03 and 0.17+/-0.03 respectively and span a wide range of ages from 1.7 to 15 Gyrs. We find that isolated galaxies follow similar scaling relations between central stellar population parameters and galaxy velocity dispersion to their counterparts in high density environments. However, we note a tendency for isolated galaxies to have slightly younger ages, higher [Z/H] and lower [E/Fe]. Such properties are qualitatively consistent with the expectation of an extended star formation history for galaxies in lower density environments. Generally we measure constant age and [E/Fe] radial gradients. We find that the age gradients anti-correlate with the central galaxy age. Metallicity gradients range from near zero to strongly negative. For our high mass galaxies metallicity gradients are shallower with increasing mass. Such behaviour is not predicted in dissipational collapse models but might be expected in multiple mergers. The metallicity gradients correlate with the central age and metallicity, as well as to the age gradients. In conclusion, our stellar population data for isolated galaxies are more compatible with an extended merger/accretion history than early dissipative collapse.



قيم البحث

اقرأ أيضاً

To investigate star formation and assembly processes of massive galaxies, we present here a spatially-resolved stellar populations analysis of a sample of 45 elliptical galaxies (Es) selected from the CALIFA survey. We find rather flat age and [Mg/Fe ] radial gradients, weakly dependent on the effective velocity dispersion of the galaxy within half-light radius. However, our analysis shows that metallicity gradients become steeper with increasing galaxy velocity dispersion. In addition, we have homogeneously compared the stellar populations gradients of our sample of Es to a sample of nearby relic galaxies, i.e., local remnants of the high-z population of red nuggets. This comparison indicates that, first, the cores of present-day massive galaxies were likely formed in gas-rich, rapid star formation events at high redshift (z>2). This led to radial metallicity variations steeper than observed in the local Universe, and positive [Mg/Fe] gradients. Second, our analysis also suggests that a later sequence of minor dry mergers, populating the outskirts of early-type galaxies (ETGs), flattened the pristine [Mg/Fe] and metallicity gradients. Finally, we find a tight age-[Mg/Fe] relation, supporting that the duration of the star formation is the main driver of the [Mg/Fe] enhancement in massive ETGs. However, the star formation time-scale alone is not able to fully explain our [Mg/Fe] measurements. Interestingly, our results match the expected effect that a variable stellar initial mass function would have on the [Mg/Fe] ratio.
225 - F. Annibali 2007
We have acquired intermediate resolution spectra in the 3700-7000 A wavelength range for a sample of 65 early-type galaxies predominantly located in low density environments, a large fraction of which show emission lines. The spectral coverage and th e high quality of the spectra allowed us to derive Lick line-strength indices and to study their behavior at different galacto-centric distances. Ages, metallicities and element abundance ratios have been derived for the galaxy sample by comparison of the line-strength index data set with our new developed Simple Stellar Population (SSP) models. We have analyzed the behavior of the derived stellar population parameters with the central galaxy velocity dispersion and the local galaxy density in order to understand the role played by mass and environment on the evolution of early-type galaxies. We find that the chemical path is mainly driven by the halo mass, more massive galaxies exhibiting the more efficient chemical enrichment and shorter star formation timescales. Galaxies in denser environments are on average older than galaxies in less dense environments. The last ones show a large age spread which is likely to be due to rejuvenation episodes.
The SAURON project will deliver two-dimensional spectroscopic data of a sample of nearby early-type galaxies with unprecedented quality. In this paper, we focus on the mapping of their stellar populations using the SAURON data, and present some preliminary results on a few prototypical cases.
109 - S. Brough 2007
We present an examination of the kinematics and stellar populations of a sample of 3 Brightest Group Galaxies (BGGs) and 3 Brightest Cluster Galaxies (BCGs) in X-ray groups and clusters. We have obtained high signal-to-noise Gemini/GMOS (Gemini South Multi-Object Spectrograph) long-slit spectra of these galaxies and use Lick indices to determine ages, metallicities and alpha-element abundance ratios out to at least their effective radii. We find that the BGGs and BCGs have very uniform masses, central ages and central metallicities. Examining the radial dependence of their stellar populations, we find no significant velocity dispersion, age, or alpha-enhancement gradients. However, we find a wide range of metallicity gradients, suggesting a variety of formation mechanisms. The range of metallicity gradients observed is surprising given the homogeneous environment these galaxies probe and their uniform central stellar populations. However, our results are inconsistent with any single model of galaxy formation and emphasize the need for more theoretical understanding of both the origins of metallicity gradients and galaxy formation itself. We postulate two possible physical causes for the different formation mechanisms.
MaNGA provides the opportunity to make precise spatially resolved measurements of the IMF slope in galaxies owing to its unique combination of spatial resolution, wavelength coverage and sample size. We derive radial gradients in age, element abundan ces and IMF slope analysing optical and near-infrared absorption features from stacked spectra out to the half-light radius of 366 early-type galaxies with masses $9.9 - 10.8;log M/M_{odot}$. We find flat gradients in age and [$alpha$/Fe] ratio, as well as negative gradients in metallicity, consistent with the literature. We further derive significant negative gradients in the [Na/Fe] ratio with galaxy centres being well enhanced in Na abundance by up to 0.5 dex. Finally, we find a gradient in IMF slope with a bottom-heavy IMF in the centre (typical mass excess factor of 1.5) and a Milky Way-type IMF at the half-light radius. This pattern is mass-dependent with the lowest mass galaxies in our sample featuring only a shallow gradient around a Milky Way IMF. Our results imply the local IMF-$sigma$ relation within galaxies to be even steeper than the global relation and hint towards the local metallicity being the dominating factor behind the IMF variations. We also employ different stellar population models in our analysis and show that a radial IMF gradient is found independently of the stellar population model used. A similar analysis of the Wing-Ford band provides inconsistent results and further evidence of the difficulty in measuring and modelling this particular feature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا