ﻻ يوجد ملخص باللغة العربية
We investigate the dust extinction properties in the host galaxy of the Gamma-Ray Burst (GRB) GRB 050904 at z=6.29 by analyzing simultaneous broad band observations of the optical and UV afterglow at three different epochs. We show that the peculiar afterglow spectral energy distribution (SED) observed at 0.5 days and at 1 day after the burst (1.6 and 3 hours rest frame) cannot be explained with dust reddening with any of the extinction curves observed at low redshift. Yet, the extinction curve recently inferred for the most distant BAL QSO at z=6.2 nicely reproduces the SED of GRB 050904 at both epochs. Our result provides an additional, independent indication that the properties of dust evolve beyond z~6. We discuss the implications of this finding within the context of the dust production mechanisms through the cosmic ages.
We present the results of deep imaging of the field of GRB 050904 with Suprime-Cam on the Subaru 8.2m telescope. We have obtained a narrow-band (130 A) image centered at 9200 A (NB921) and an i-band image with total integration times of 56700 and 240
Claim of dust extinction for this GRB has been debated in the past. We suggest that the discrepant results occur primarily because most of previous studies have not simultaneously investigated the X-ray to near-IR spectral energy distribution of this
Context: GRB afterglows are excellent probes of gas and dust in star-forming galaxies at all epochs. It has been posited that dust in the early Universe must be different from dust at lower z. To date two reports directly support this contention, one
GRB050904 is the gamma-ray burst with the highest measured redshift. We performed time resolved X-ray spectroscopy of the late GRB and early afterglow emission. We find robust evidence for a decrease with time of the soft X-ray absorbing column. We m
GRB050904 is very interesting since it is by far the most distant GRB event known to date($z=6.29$). It was reported that during the prompt high energy emission phase, a very bright optical flare was detected, and it was temporal coincident with an X