ﻻ يوجد ملخص باللغة العربية
We introduce a new quantity, the mass flux density of galaxies evolving from the blue sequence to the red sequence. We propose a simple technique for constraining this mass flux using the volume corrected number density in the extinction-corrected UV-optical color magnitude distribution, the stellar age indexes H-delta-a and D_n(4000), and a simple prescription for spectral evolution using a quenched star formation history. We exploit the excellent separation of red and blue sequences in the NUV-r band color-magnitude diagram. The final value we measure, 0.033 M_sun yr^-1 Mpc^-3, is strictly speaking an upper limit due to the possible contributions of bursting, composite, and extincted galaxies. However, it compares favorably with estimates of the average mass flux that we make based on the red luminosity function evolution derived from the DEEPII and COMBO-17 surveys (Bell et al 2004; Faber et al. 2005), 0.034 M_sun yr^-1 Mpc^-3. We find that the blue sequence mass has remained roughly constant since z=1 (mass flux 0.01 M_sun yr^-1 Mpc^-3) but the average on-going star formation of 0.037$ M_sun yr^-1 Mpc^-3 over 0<z<1 is balanced by mass flux off the blue sequence. We explore the nature of the galaxies in the transition zone with particular attention to the frequency and impact of AGNs. The AGN fraction peaks in the transition zone. We find circumstantial, albeit weak evidence that the quench rates are higher in higher luminosity AGNs.
Using deep NIR VLT/ISAAC and optical HST/WFPC2 imaging in the fields of the HDFS and MS1054-03, we study the rest-frame UV-to-optical colors and magnitudes of galaxies to z~3. While there is no evidence for a red sequence at z~3, there does appear to
We use the UV-optical color magnitude diagram in combination with spectroscopic and photometric measurements derived from the SDSS spectroscopic sample to measure the distribution of galaxies in the local universe (z<0.25) and their physical properti
We have examined the outburst tracks of 40 novae in the color-magnitude diagram (intrinsic B-V color versus absolute V magnitude). After reaching the optical maximum, each nova generally evolves toward blue from the upper-right to the lower-left and
We propose a modified color-magnitude diagram for novae in outburst, i.e., $(B-V)_0$ versus $(M_V-2.5 log f_{rm s})$, where $f_{rm s}$ is the timescaling factor of a (target) nova against a comparison (template) nova, $(B-V)_0$ is the intrinsic $B-V$
We obtained GALEX FUV, NUV, and Spitzer/IRAC 3.6$mu$m photometry for > 2000 galaxies, available for 90% of the S4G sample. We find a very tight GALEX Blue Sequence (GBS) in the (FUV-NUV) versus (NUV-[3.6]) color-color diagram which is populated by ir