ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical clocks for early-type galaxies

148   0   0.0 ( 0 )
 نشر من قبل Conrado Carretero
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed stellar population analysis of 27 massive elliptical galaxies within 4 very rich clusters at redshift z~0.2. We obtained accurate estimates of the mean luminosity-weighted ages and relative abundances of CN, Mg and Fe as functions of the galaxy velocity dispersion, sigma. Our results are compatible with a scenario in which the stellar populations of massive elliptical galaxies, independently of their environment and mass, had formation timescales shorter than ~1 Gyr. This result implies that massive elliptical galaxies have evolved passively since, at least, as long ago as z~2. For a given galaxy mass the duration of star formation is shorter in those galaxies belonging to more dense environments. Finally, we show that the abundance ratios [CN/Fe] and [Mg/Fe] are the key chemical clocks to infer the star formation history timescales in ellipticals. In particular, [Mg/Fe] provides an upper limit for those formation timescales, while [CN/Fe] apperars to be the most suitable parameter to resolve them in elliptical galaxies with sigma<300 km/s.



قيم البحث

اقرأ أيضاً

75 - B. L. Ziegler 2004
We investigate in detail 13 early-type field galaxies with 0.2<z<0.7 drawn from the FORS Deep Field. Since the majority (9 galaxies) is at z~0.4, we compare the field galaxies to 22 members of three rich clusters with z=0.37 to explore possible varia tions caused by environmental effects. We exploit VLT/FORS spectra (R~1200) and HST/ACS imaging to determine internal kinematics, structures and stellar population parameters. From the Faber-Jackson and Fundamental Plane scaling relations we deduce a modest luminosity evolution in the B-band of 0.3-0.5mag for both samples. We compare measured Lick absorption line strengths (Hdelta, Hgamma, Hbeta, Mg_b, & Fe5335) with evolutionary stellar population models to derive light-averaged ages, metallicities and the element abundance ratios Mg/Fe. We find that all these three stellar parameters of the distant galaxies obey a scaling with velocity dispersion (mass) which is very well consistent with the one of local nearby galaxies. In particular, the distribution of Mg/Fe ratios of local galaxies is matched by the distant ones, and their derived mean offset in age corresponds to the average lookback time. This indicates that there was little chemical enrichment and no significant star formation within the last ~5Gyr. The calculated luminosity evolution of a simple stellar population model for the derived galaxy ages and lookback times is in most cases very consistent with the mild brightening measured by the scaling relations.
Previous studies have found that the elemental abundances of a star correlate directly with its age and metallicity. Using this knowledge, we derive ages for a sample of 250,000 stars taken from GALAH DR3 using only their overall metallicity and chem ical abundances. Stellar ages are estimated via the machine learning algorithm $XGBoost$, using main sequence turnoff stars with precise ages as our input training set. We find that the stellar ages for the bulk of the GALAH DR3 sample are accurate to 1-2 Gyr using this method. With these ages, we replicate many recent results on the age-kinematic trends of the nearby disk, including the age-velocity dispersion relationship of the solar neighborhood and the larger global velocity dispersion relations of the disk found using $Gaia$ and GALAH. The fact that chemical abundances alone can be used to determine a reliable age for a star have profound implications for the future study of the Galaxy as well as upcoming spectroscopic surveys. These results show that the chemical abundance variation at a given birth radius is quite small, and imply that strong chemical tagging of stars directly to birth clusters may prove difficult with our current elemental abundance precision. Our results highlight the need of spectroscopic surveys to deliver precision abundances for as many nucleosynthetic production sites as possible in order to estimate reliable ages for stars directly from their chemical abundances. Applying the methods outlined in this paper opens a new door into studies of the kinematic structure and evolution of the disk, as ages may potentially be estimated for a large fraction of stars in existing spectroscopic surveys. This would yield a sample of millions of stars with reliable age determinations, and allow precise constraints to be put on various kinematic processes in the disk, such as the efficiency and timescales of radial migration.
While we observe a large amount of cold interstellar gas and dust in a subset of the early-type galaxy (ETG) population, the source of this material remains unclear. The two main, competing scenarios are external accretion of lower mass, gas-rich dwa rfs and internal production from stellar mass loss and/or cooling from the hot interstellar medium (ISM). We test these hypotheses with measurements of the stellar and nebular metallicities of three ETGs (NGC 2768, NGC 3245, and NGC 4694) from new long-slit, high signal-to-noise ratio spectroscopy from the Multi-Object Double Spectographs (MODs) on the Large Binocular Telescope (LBT). These ETGs have modest star formation rates and minimal evidence of nuclear activity. We model the stellar continuum to derive chemical abundances and measure gas-phase abundances with standard nebular diagnostics. We find that the stellar and gas-phase abundances are very similar, which supports internal production and is very inconsistent with the accretion of smaller, lower metallicity dwarfs. All three of these galaxies are also consistent with an extrapolation of the mass-metallicity relation to higher mass galaxies with lower specific star formation rates. The emission line flux ratios along the long-slit, as well as global line ratios clearly indicate that photoionization dominates and ionization by alternate sources including AGN activity, shocks, cosmic rays, dissipative magnetohydrodynamic waves, and single degenerate Type Ia supernovae progenitors do not significantly affect the line ratios.
Aims. To explore the chemical pattern of early-type stars with planets, searching for a possible signature of planet formation. In particular, we study a likely relation between the lambda Bootis chemical pattern and the presence of giant planets. Me thods. We performed a detailed abundance determination in a sample of early-type stars with and without planets via spectral synthesis. Results. We compared the chemical pattern of the stars in our sample (13 stars with planets and 24 stars without detected planets) with those of lambda Bootis and other chemically peculiar stars. We have found four lambda Bootis stars in our sample, two of which present planets and circumstellar disks (HR 8799 and HD 169142) and one without planets detected (HD 110058). We have also identified the first lambda Bootis star orbited by a brown dwarf (zeta Del). This interesting pair lambda Bootis star + brown dwarf could help to test stellar formation scenarios. We found no unique chemical pattern for the group of early-type stars bearing giant planets. However, our results support, in principle, a suggested scenario in which giant planets orbiting pre-main-sequence stars possibly block the dust of the disk and result in a lambda Bootis-like pattern. On the other hand, we do not find a lambda Bootis pattern in different hot-Jupiter planet host stars, which do not support the idea of possible accretion from the winds of hot-Jupiters, recently proposed in the literature. Then, other mechanisms should account for the presence of the lambda Bootis pattern between main-sequence stars. Finally, we suggest that the formation of planets around lambda Bootis stars such as HR 8799 and HD 169142 is also possible through the core accretion process and not only gravitational instability [abridged]
We explore the application of Bayesian image analysis to infer the properties of an SDSS early-type galaxy sample including AGN. We use GALPHAT (Yoon et al. 2010) with a Bayes-factor model comparison to photometrically infer an AGN population and ver ify this using spectroscopic signatures. Our combined posterior sample for the SDSS sample reveals distinct low and high concentration modes after the point-source flux is modeled. This suggests that ETG parameters are intrinsically bimodal. The bimodal signature was weak when analyzed by GALFIT (Peng et al. 2002, 2010). This led us to create several ensembles of synthetic images to investigate the bias of inferred structural parameters and compare with GALFIT. GALPHAT inferences are less biased, especially for high-concentration profiles: GALPHAT Sersic index $n$, $r_{e}$ and MAG deviate from the true values by $6%$, $7.6%$ and $-0.03 ,mathrm{mag}$, respectively, while GALFIT deviates by $15%$, $22%$ and $-0.09$, mag, respectively. In addition, we explore the reliability for the photometric detection of AGN using Bayes factors. For our SDSS sample with $r_{e}ge 7.92,$arcsec, we correctly identify central point sources with $mathrm{Mag_{PS}}-mathrm{Mag_{Sersic}}le 5$ for $nle6$ and $mathrm{Mag_{PS}}-mathrm{Mag_{Sersic}}le 3$ for $n>6$. The magnitude range increases and classification error decreases with increasing resolution, suggesting that this approach will excel for upcoming high-resolution surveys. Future work will extend this to models that test hypotheses of galaxy evolution through the cosmic time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا