ﻻ يوجد ملخص باللغة العربية
Understanding the nature of the instabilities of LBVs is important to understand the late evolutionary stages of very massive stars. We investigate the long term, S Dor-type variability of the luminous blue variable GR290 (Romanos star) in M33, and its 2006 minimum phase. New spectroscopic and photometric data taken in November and December 2006 were employed in conjunction with already published data on GR290 to derive the physical structure of GR290 in different phases and the time scale of the variability. We find that by the end of 2006, GR 290 had reached the deepest visual minimum so far recorded. Its present spectrum resembles closely that of the Of/WN9 stars, and is the hottest so far recorded in this star (and in any LBV as well), while its visual brightness decreased by about 1.4 mag. This first spectroscopic record of GR290 during a minimum phase confirms that, similarly to AG Car and other LBVs, the star is subject to ample S Dor-type variations, being hotter at minimum, suggesting that the variations take place at constant bolometric luminosity.
We have built the historical light curve of the luminous variable GR 290 back to 1901, from old observations of the star found in several archival plates of M 33. These old recordings together with published and new data show that for at least half a
We present the light curve of Luminous Blue Variable candidate star GR290 (Romanos star) in M33. The photographic photometry was made in photographic plates taken in B band of the M33 galaxy and cover an eight year period, 1982 - 1990. Twenty five pl
We study the long term, S Dor-type variability and the present hot phase of the LBV star GR290 (Romanos Star) in M33 in order to investigate possible links between the LBV and WNL stages of very massive stars. We use intermediate resolution spectra,
Within the key project Herschel M33 extended survey (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M33, combining the study of local conditions affecting individual s
Star-formation within galaxies appears on multiple scales, from spiral structure, to OB associations, to individual star clusters, and often sub-structure within these clusters. This multitude of scales calls for objective methods to find and classif