ﻻ يوجد ملخص باللغة العربية
We estimate the power spectrum of SZ(Sunyaev-Zeldovich)-effect-induced temperature fluctuations on sub-degree scales by using the cross correlation between the three-year WMAP maps and 2MASS galaxy distribution. We produced the SZ effect maps by hydrodynamic simulation samples of the $Lambda$CDM model, and show that the SZ effect temperature fluctuations are highly non-Gaussian. The PDF of the temperature fluctuations has a long tail. More than 70% power of the SZ effect temperature fluctuations attributes to top $sim 1%$ wavelet modes (long tail events). On the other hand, the CMB temperature fluctuations basically are Gaussian. Although the mean power of CMB temperature fluctuations on sub-degree scales is much higher than that of SZ effect map, the SZ effect temperature fluctuations associated with top 2MASS clusters is comparable to the power of CMB temperature fluctuations on the same scales. Thus, from noisy WMAP maps, one can have a proper estimation of the SZ effect power at the positions of the top 2MASS clusters. The power spectrum given by these top wavelet modes is useful to constrain the parameter of density fluctuations amplitude $sigma_8$. We find that the power spectrum of these top wavelet modes of SZ effect on sub-degree scales basically is consistent with the simulation maps produced with $sigma_8=0.84$. The simulation samples of $sigma_8=0.74$ show, however, significant deviation from detected SZ power spectrum. It can be ruled out with confidence level 99% if all other cosmological parameters are the same as that given by the three-year WMAP results.
We study the SZ-effect-induced non-Gaussianity in the cosmic microwave background (CMB) fluctuation maps. If a CMB map is contaminated by the SZ effect of galaxies or galaxy clusters, the CMB maps should have similar non-Gaussian features as the gala
Thermal Sunyaev-Zeldovich (tSZ) effect and X-ray emission from galaxy clusters have been extensively used to constrain cosmological parameters. These constraints are highly sensitive to the relations between cluster masses and observables (tSZ and X-
WMAP observations at mm wavelengths are sensitive to the Sunyaev-Zeldovich effect in galaxy clusters. Among all the objects in the sky, the Virgo cluster is expected to provide the largest integrated signal. Based on models compatible with the X-ray
Stacking cosmic microwave background (CMB) maps around known galaxy clusters and groups provides a powerful probe of the distribution of hot gas in these systems via the Sunyaev-Zeldovich (SZ) effect. A stacking analysis allows one to detect the aver
We present an interferometric measurement of the Sunyaev-Zeldovich effect (SZE) at 1 cm for the galaxy cluster Abell 2163. We combine this data point with previous measurements at 1.1, 1.4, and 2.1 mm from the SuZIE experiment to construct the most c