ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust and Atomic Gas in Dwarf Irregular Galaxies of the M81 Group: The SINGS and THINGS view

140   0   0.0 ( 0 )
 نشر من قبل Fabian Walter
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[abridged] We present observations of the dust and atomic gas phase in seven dwarf irregular galaxies of the M81 group from the SINGS and THINGS surveys. The Spitzer observations provide a first glimpse of the nature of the non-atomic ISM in these metal-poor (Z~0.1 Z_sun), quiescent (SFR~0.001-0.1 M_sun/yr) dwarf galaxies. Dust emission is detected in five out of the seven targets. Most detected dust emission is restricted to HI column densities >1x10^21 cm^-2. Spitzer spectroscopy of two regions in the brightest galaxies (IC 2574 and Holmberg II) show distinctly different spectral shapes. The spectrum of IC 2574 shows aromatic features that are less luminous (relative to the FIR luminosity) compared to an average SINGS spiral galaxy by a factor of ~7 . The aromatic features in Holmberg~II (which has only a slightly lower gas-phase metallicity) are fainter than in IC 2574 by an order of magnitude. This result emphazises that the strength of the aromatic features is not a simple linear function of metallicity. We estimate dust masses of ~10^4-10^6 M_sun for the M81 dwarf galaxies, resulting in an average dust--to--gas ratio (M_dust/M_HI) of ~3x10^-4 (1.5x10^-3 if only the HI that is associated with dust emission is considered); this is an order of magnitude lower than the typical value derived for the SINGS spirals. The dwarf galaxies are underluminous per unit star formation rate at 70um as compared to the more massive galaxies in SINGS by a factor of ~2. However, the average 70um/160um ratio in the sample dwarf galaxies is higher than what is found in the other galaxies of the SINGS sample. This can be explained by a combination of a lower dust content in conjunction with a higher dust temperature in the dwarfs.



قيم البحث

اقرأ أيضاً

We present observations and analysis of nine dwarf irregular galaxies (dIs) in the M81 Group taken with the Advanced Camera for Surveys aboard the Hubble Space Telescope. The nine galaxy sample (the Garland, M81 Dwarf A, DDO 53, Ho IX, Ho I, DDO 165, NGC 2366, Ho II, and IC 2574) spans 6 magnitudes in luminosity, a factor of 1000 in current star formation rate, and 0.5 dex in metallicity. Here we use color-magnitude diagrams of resolved stellar populations to study the star formation histories (SFHs) of these galaxies. We divide the sample into faint and bright galaxies, with a dividing line of M_${B}$ = -15, and then analyze the similarities and differences in the SFHs, birthrate parameters, fraction of stars formed per time interval, and spatial distribution of stellar components. Comparing these parameters as a function of luminosity, we find only minor differences in SF characteristics. We extend our comparison to select dIs in the Local Group (LG), and find only minor differences in SF parameters. The fraction of stars formed per time interval for an average M81 Group and LG dI is consistent with a constant SFH. However, individual galaxies can show significant departures from a constant SFH. Thus, we find this result underlines the importance of stochastic SF in dIs. We also compare possible formation scenarios of the less luminous and candidate tidal dwarfs in the M81 Group. The SFHs and the lack of an overdensity of associated red stars suggest that the Garland and Ho IX are not dIs and are potentially tidal dwarf galaxies. Interestingly, a noteworthy difference between the LG and the M81 Group is the lack of tidal dwarf candidates in the LG.
We present a detailed analysis of the radial distribution of dust properties in the SINGS sample, performed on a set of UV, IR and HI surface brightness profiles, combined with published molecular gas profiles and metallicity gradients. The internal extinction, derived from the TIR-to-FUV luminosity ratio, decreases with radius, and is larger in Sb-Sbc galaxies. The TIR-to-FUV ratio correlates with the UV spectral slope beta, following a sequence shifted to redder UV colors with respect to that of starbursts. The star formation history (SFH) is identified as the main driver of this departure. We have also derived radial profiles of the total dust mass surface density, the fraction of the dust mass contributed by PAHs, the fraction of the dust mass heated by very intense starlight and the intensity of the radiation field heating the grains. The dust profiles are exponential, their radial scale-length being constant from Sb to Sd galaxies (only ~10% larger than the stellar scale-length). Many S0/a-Sab galaxies have central depressions in their dust radial distributions. The PAH abundance increases with metallicity for 12+log(O/H)<9, and at larger metallicities the trend flattens and even reverses, with the SFH being a plausible underlying driver for this behavior. The dust-to-gas ratio is also well correlated with metallicity and therefore decreases with galactocentric radius.
We present new H-alpha narrow band imaging of the HII regions in eight Sculptor Group dwarf irregular (dI) galaxies. Comparing the Sculptor Group dIs to the Local Group dIs, we find that the Sculptor Group dIs have, on average, lower values of SFR wh en normalized to either galaxy luminosity or gas mass (although there is considerable overlap between the two samples). The properties of ``transition (dSph/dIrr) galaxies in Sculptor and the Local Group are also compared and found to be similar. The transition galaxies are typically among the lowest luminosities of the gas rich dwarf galaxies. Relative to the dwarf irregular galaxies, the transition galaxies are found preferentially nearer to spiral galaxies, and are found nearer to the center of the mass distribution in the local cloud. While most of these systems are consistent with normal dI galaxies which currently exhibit temporarily interrupted star formation, the observed density-morphology relationship (which is weaker than that observed for the dwarf spheroidal galaxies) indicates that environmental processes such as ``tidal stirring may play a role in causing their lower SFRs.
We present $^{12}$CO(1-0) and $^{12}$CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies a nd marginally detected in another one. CO fluxes correlate with the FIR 250 $mu$m emission, and the dwarfs follow the same linear relation that holds for more massive spiral galaxies extended to a wider dynamical range. We compare different methods to estimate H2 molecular masses, namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant at stellar masses <~ 10$^9$ M$_{odot}$, contrary to the atomic hydrogen fraction, M$_{HI}$/M$_*$, which increases inversely with M$_*$. The flattening of the M$_{H_2}$/M$_*$ ratio at low stellar masses does not seem to be related to the effects of the cluster environment because it occurs for both HI-deficient and HI-normal dwarfs. The molecular-to-atomic ratio is more tightly correlated with stellar surface density than metallicity, confirming that the interstellar gas pressure plays a key role in determining the balance between the two gaseous components of the interstellar medium. Virgo dwarfs follow the same linear trend between molecular gas mass and star formation rate as more massive spirals, but gas depletion timescales, $tau_{dep}$, are not constant and range between 100 Myr and 6 Gyr. The interaction with the Virgo cluster environment is removing the atomic gas and dust components of the dwarfs, but the molecular gas appears to be less affected at the current stage of evolution within the cluster. However, the correlation between HI deficiency and the molecular gas depletion time suggests that the lack of gas replenishment from the outer regions of the disc is lowering the star formation activity.
110 - D. Calzetti 2017
We investigate the relation between gas and star formation in sub-galactic regions, ~360 pc to ~1.5 kpc in size, within the nearby starburst dwarf NGC4449, in order to separate the underlying relation from the effects of sampling at varying spatial s cales. Dust and gas mass surface densities are derived by combining new observations at 1.1 mm, obtained with the AzTEC instrument on the Large Millimeter Telescope, with archival infrared images in the range 8-500 micron from the Spitzer Space Telescope and the Herschel Space Observatory. We extend the dynamic range of our mm (and dust) maps at the faint end, using a correlation between the far-infrared/millimeter colors F(70)/F(1100) [and F(160)/F(1100)] and the mid-infrared color F(8)/F(24) that we establish for the first time for this and other galaxies. Supplementing our data with maps of the extinction-corrected star formation rate (SFR) surface density, we measure both the SFR-molecular gas and the SFR-total gas relations in NGC4449. We find that the SFR-molecular gas relation is described by a power law with exponent that decreases from ~1.5 to ~1.2 for increasing region size, while the exponent of the SFR-total gas relation remains constant with value ~1.5 independent of region size. We attribute the molecular law behavior to the increasingly better sampling of the molecular cloud mass function at larger region sizes; conversely, the total gas law behavior likely results from the balance between the atomic and molecular gas phases achieved in regions of active star formation. Our results indicate a non-linear relation between SFR and gas surface density in NGC4449, similar to what is observed for galaxy samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا